Broadband achromatic metalens in Terahertz regime

Achromatic focusing is essential for broadband operation, which has recently been realised from visible to infrared wavelengths using a metasurface. Similarly, multi-terahertz functional devices can be encoded in a desired metasurface phase profile. However, metalenses suffer from larger chromatic aberrations because of the intrinsic dispersion of each unit element. Here, we propose an achromatic metalens with C-shaped unit elements working from 0.3 to 0.8 THz with a bandwidth of approximately 91% over the centre frequency. The designed metalens possesses a high working efficiency of more than 68% at the peak and a relatively high numerical aperture of 0.385. We further demonstrate the robustness of our C-shaped metalens, considering lateral shape deformations and deviations in the etching depth. Our metalens design opens an avenue for future applications of terahertz meta-devices in spectroscopy, time-of-flight tomography and hyperspectral imaging systems.

[1]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[2]  G. Liang,et al.  Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens. , 2018, Optics express.

[3]  Zeyu Zhao,et al.  Merging Geometric Phase and Plasmon Retardation Phase in Continuously Shaped Metasurfaces for Arbitrary Orbital Angular Momentum Generation , 2016 .

[4]  Xiaoliang Ma,et al.  Catenary optics for achromatic generation of perfect optical angular momentum , 2015, Science Advances.

[5]  P. Mercère,et al.  Off-axis aberration compensation of focusing with spherical mirrors using deformable mirrors , 2003 .

[6]  Sailing He,et al.  Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. , 2015, ACS nano.

[7]  Lei Wang,et al.  Liquid-crystal-integrated metadevice: towards active multifunctional terahertz wave manipulations. , 2018, Optics letters.

[8]  Zhen Tian,et al.  High‐Efficiency Dielectric Metasurfaces for Polarization‐Dependent Terahertz Wavefront Manipulation , 2018 .

[9]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[10]  P. Genevet,et al.  Multiwavelength achromatic metasurfaces by dispersive phase compensation , 2014, Science.

[11]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[12]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[13]  Guixin Li Achromatic metasurface lens at visible wavelengths , 2018 .

[14]  Jianqiang Gu,et al.  Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control , 2017 .

[15]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[16]  Gordon Wetzstein,et al.  Photonic Multitasking Interleaved Si Nanoantenna Phased Array. , 2016, Nano letters.

[17]  Rainer Leonhardt,et al.  Aspheric lenses for terahertz imaging , 2008 .

[18]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[19]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[20]  Seyedeh Mahsa Kamali,et al.  Multiwavelength polarization insensitive lenses based on dielectric metasurfaces with meta-molecules , 2016, 1601.05847.

[21]  Highly tunable elastic dielectric metasurface lenses , 2016 .

[22]  Wei Ting Chen,et al.  Achromatic metalens over 60 nm bandwidth in the visible , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[23]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[24]  Jiaguang Han,et al.  Coherent Control of Optical Spin‐to‐Orbital Angular Momentum Conversion in Metasurface , 2016, Advanced materials.

[25]  Zhen Tian,et al.  A Broadband Metasurface‐Based Terahertz Flat‐Lens Array , 2015 .

[26]  Seyedeh Mahsa Kamali,et al.  Controlling the sign of chromatic dispersion in diffractive optics , 2017, 1701.07178.

[27]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[28]  Federico Capasso,et al.  A broadband achromatic metalens for focusing and imaging in the visible , 2018, Nature Nanotechnology.

[29]  Li-Guo Zhu,et al.  All-dielectric metalens for terahertz wave imaging. , 2018, Optics express.

[30]  Xiangang Luo,et al.  Broadband Functional Metasurfaces: Achieving Nonlinear Phase Generation toward Achromatic Surface Cloaking and Lensing , 2019, Advanced Optical Materials.

[31]  Xiaoliang Ma,et al.  Achromatic flat optical components via compensation between structure and material dispersions , 2016, Scientific Reports.

[32]  Yan Peng,et al.  Manipulating Terahertz Plasmonic Vortex Based on Geometric and Dynamic Phase , 2018, Advanced Optical Materials.

[33]  Shi-Jun Ge,et al.  Terahertz vortex beam generator based on a photopatterned large birefringence liquid crystal. , 2017, Optics express.

[34]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[35]  Shulin Sun,et al.  Electromagnetic metasurfaces: physics and applications , 2019, Advances in Optics and Photonics.

[36]  Lei Zhang,et al.  Realization of Full Control of a Terahertz Wave Using Flexible Metasurfaces , 2017 .

[37]  Andrei Faraon,et al.  Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations , 2016, Nature Communications.

[38]  Wei Ting Chen,et al.  Polarization-Insensitive Metalenses at Visible Wavelengths. , 2016, Nano letters.