Evolutionary many-objective optimisation: an exploratory analysis

This inquiry explores the effectiveness of a class of modern evolutionary algorithms, represented by NSGA-II, for solving optimisation tasks with many conflicting objectives. Optimiser behaviour is assessed for a grid of recombination operator configurations. Performance maps are obtained for the dual aims of proximity to, and distribution across, the optimal trade-off surface. Classical settings for recombination are shown to be suitable for small numbers of objectives but correspond to very poor performance as the number of objectives is increased, even when large population sizes are used. Explanations for this behaviour are offered via the concepts of dominance resistance and active diversity promotion.

[1]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[2]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[3]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[4]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[5]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[6]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[7]  M. Farina,et al.  On the optimal solution definition for many-criteria optimization problems , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[8]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[9]  David E. Goldberg,et al.  The Race, the Hurdle, and the Sweet Spot , 1998 .

[10]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[11]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[12]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[13]  Marco Laumanns,et al.  On the Effects of Archiving, Elitism, and Density Based Selection in Evolutionary Multi-objective Optimization , 2001, EMO.

[14]  Kalyanmoy Deb,et al.  Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence , 2001, EMO.

[15]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[16]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[17]  H. Kita,et al.  Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[18]  Kalyanmoy Deb,et al.  Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions , 2003, EMO.

[19]  Peter J. Fleming,et al.  Conflict, Harmony, and Independence: Relationships in Evolutionary Multi-criterion Optimisation , 2003, EMO.

[20]  P. J. Fleming,et al.  An Exploration of the Many-Objective Optimisation Process for a Class of Evolutionary Algorithms. , 2003 .

[21]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[22]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[23]  Peter J. Fleming,et al.  Why Use Elitism And Sharing In A Multi-objective Genetic Algorithm? , 2002, GECCO.

[24]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[25]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[26]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[27]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[28]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[29]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.