Effect of Titanium Matrix Structure on Growth Morphology of Anodized TiO2 Nanotube Arrays for Applications in Photoelectrochemical Performances

[1]  Yanmei Xin,et al.  Oxygen vacancy-regulated TiO2 nanotube photoelectrochemical sensor for highly sensitive and selective detection of tetracycline hydrochloride , 2022, Sensors and Actuators B: Chemical.

[2]  Ting-ting Guo,et al.  Effect of Ti rolling process on the enhanced interfacial adhesion between TiO2 and underlying Ti substrate , 2022, Electrochemistry Communications.

[3]  Hui Xie,et al.  Crystallographic orientation and morphology control of Sb2Se3 to sensitize TiO2 nanotube arrays for enhanced photoelectrochemical performances , 2022, Chemical Engineering Journal.

[4]  Yongxin Lu,et al.  Surface-Charge Regulated TiO2 Nanotube Arrays as Scaffold for Constructing Binder-Free High-Performance Supercapacitor , 2021 .

[5]  Zhenhua Chen,et al.  Evaluation of the Titanium Substrate Effect on the Morphology of Anodic TiO2 Nanotubes , 2021, ECS Journal of Solid State Science and Technology.

[6]  Yuling Xu,et al.  Beta1-integrin/Hedgehog-Gli1 signaling pathway fuels the diameter-dependent osteoblast differentiation on different TiO2 nanotubes: The optimal-diameter nanotubes for osteoblast differentiation. , 2021, The international journal of biochemistry & cell biology.

[7]  Xiaohua Yu,et al.  The growth of anti-friction and wear-resistance TiO2 nanotube arrays driven by residual stress , 2021 .

[8]  Kunfeng Chen,et al.  Highly Ordered TiO2 Nanotube Arrays with Engineered Electrochemical Energy Storage Performances , 2021, Materials.

[9]  A. Bandyopadhyay,et al.  Electrically polarized TiO2 nanotubes on Ti implants to enhance early-stage osseointegration. , 2019, Acta biomaterialia.

[10]  C. Elias,et al.  Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications , 2019, Journal of Materials Research and Technology.

[11]  Martin Motola,et al.  Enhanced photocatalytic activity of hydrogenated and vanadium doped TiO2 nanotube arrays grown by anodization of sputtered Ti layers , 2018 .

[12]  C. Sukotjo,et al.  Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface , 2017 .

[13]  W. Hwang,et al.  Superior Pre-Osteoblast Cell Response of Etched Ultrafine-Grained Titanium with a Controlled Crystallographic Orientation , 2017, Scientific Reports.

[14]  F. Di Fonzo,et al.  TiO2 nanotubes: interdependence of substrate grain orientation and growth rate. , 2015, ACS applied materials & interfaces.

[15]  K. Yamashita,et al.  Enhanced osteoconductivity of titanium implant by polarization-induced surface charges. , 2014, Journal of biomedical materials research. Part A.

[16]  Yan Sun,et al.  Effect of anodization voltage on performance of TiO2 nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell , 2014 .

[17]  Yanhong Zhang,et al.  Influence of substrate morphology on the growth and properties of TiO2 nanotubes in HBF4-based electrolyte , 2014 .

[18]  Hui Wu,et al.  High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach , 2014 .

[19]  Hongshan He,et al.  Effect of Titanium Substrate Morphology on the Growth of TiO 2 Nanotubes and Their Photovoltaic Performance in Dye-Sensitized Solar Cells , 2012 .

[20]  M. Kang,et al.  TiO2 nanotube fabrication with highly exposed (001) facets for enhanced conversion efficiency of solar cells. , 2012, Chemical communications.

[21]  A. Ekrami,et al.  Effects of rolling reduction on mechanical properties anisotropy of commercially pure titanium , 2012 .

[22]  Y. Li,et al.  Morphology Control of Anodic TiO2 Nanomaterials via Cold Work Pretreatment of Ti Foils , 2011 .

[23]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[24]  W. Kim,et al.  Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature , 2010 .

[25]  N. Chawla,et al.  Tailoring TiO2 nanotube growth during anodic oxidation by crystallographic orientation of Ti , 2009 .

[26]  Z. Su,et al.  Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides , 2008 .

[27]  H. Wenk,et al.  Microstructure and microtexture of highly cold-rolled commercially pure titanium , 2007 .

[28]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .