Growth of gold nanoparticles using aluminum template via low-temperature hydrothermal method for memory applications

[1]  Eric J. Mittemeijer,et al.  Fundamentals of Materials Science: The Microstructure–Property Relationship Using Metals as Model Systems , 2014 .

[2]  L. P. Goh,et al.  Direct formation of AuNPs thin film using thermal evaporated zinc as sacrificial template in hydrothermal method , 2014, Journal of Materials Science: Materials in Electronics.

[3]  A. Gobouri,et al.  A Revisit to the Corrosion Inhibition of Aluminum in Aqueous Alkaline Solutions by Water-Soluble Alginates and Pectates as Anionic Polyelectrolyte Inhibitors , 2013 .

[4]  K. Aw,et al.  An optically transparent and flexible memory with embedded gold nanoparticles in a polymethylsilsesquioxane dielectric , 2013 .

[5]  Puneet Mishra,et al.  Resistive phase transition of the superconducting Si(111)-(7×3)-In surface , 2013, Nanoscale Research Letters.

[6]  Weihao Gao,et al.  A transparent and flexible organic bistable memory device using parylene with embedded gold nanoparticles , 2013, Journal of Materials Science: Materials in Electronics.

[7]  H. Águas,et al.  Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation , 2013, Scientific Reports.

[8]  H. Meng,et al.  Low operation voltage macromolecular composite memory assisted by graphene nanoflakes , 2013 .

[9]  R. Adnan,et al.  Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon , 2013, Nanoscale Research Letters.

[10]  Ming-Chung Chen,et al.  Self-assembled monolayer immobilized gold nanoparticles for plasmonic effects in small molecule organic photovoltaic. , 2013, ACS applied materials & interfaces.

[11]  J. González,et al.  Transport properties of two finite armchair graphene nanoribbons , 2013, Nanoscale Research Letters.

[12]  L. P. Goh,et al.  Direct formation of gold nanoparticles on substrates using a novel ZnO sacrificial templated-growth hydrothermal approach and their properties in organic memory device , 2012, Nanoscale Research Letters.

[13]  Yang Yang,et al.  Electrical memory devices based on inorganic/organic nanocomposites , 2012 .

[14]  U. Pal,et al.  Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors , 2012, Nanoscale Research Letters.

[15]  C. B. Roberts,et al.  Self-Assembled Monolayer-Immobilized Gold Nanoparticles as Durable, Anti-Stiction Coatings for MEMS , 2011, Journal of Microelectromechanical Systems.

[16]  Kean C. Aw,et al.  Electrical characteristics of poly(methylsilsesquioxane) thin films for non-volatile memory , 2011 .

[17]  C. Leu,et al.  Spin-Coating-Derived Gold-Nanoparticle Memory , 2010 .

[18]  Jang‐Sik Lee Recent progress in gold nanoparticle-based non-volatile memory devices , 2010 .

[19]  T. Ohsaka,et al.  Fabrication of Au(111) facet enriched electrode on glassy carbon , 2009 .

[20]  Y. Tao,et al.  Electric bistability in pentacene film-based transistor embedding gold nanoparticles. , 2009, Journal of the American Chemical Society.

[21]  Wei Lin Leong,et al.  Charging dynamics of discrete gold nanoparticle arrays self-assembled within a poly(styrene-b-4-vinylpyridine) diblock copolymer template , 2008 .

[22]  A. Raychaudhuri,et al.  Growth of two-dimensional arrays of uncapped gold nanoparticles on silicon substrates , 2008 .

[23]  S. Sim,et al.  Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase. , 2008, Journal of colloid and interface science.

[24]  P. Bhandari,et al.  Dependence of Crystal Growth of Gold Nanoparticles on the Capping Behavior of Surfactant at Ambient Conditions , 2008 .

[25]  M. Fujihira,et al.  Self-assembled nanostructure of Au nanoparticles on a self-assembled monolayer , 2005 .

[26]  Yu-Cheng Chang,et al.  Rapid fabrication of high quality self-assembled nanometer gold particles by spin coating method , 2003 .

[27]  Gero Decher,et al.  Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials , 2003 .

[28]  P. Deymier,et al.  Preparation of some specific grain boundaries in aluminum for HREM studies by cold rolling and annealing , 1990 .

[29]  G. S. Parks,et al.  Selected values of chemical thermodynamic properties , 1953 .

[30]  P. Šiffalovič,et al.  Modified Langmuir-Blodgett deposition of nanoparticles - measurement of 2D to 3D ordered arrays , 2010 .

[31]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[32]  Charles R. Martin,et al.  A general template-based method for the preparation of nanomaterials , 1997 .

[33]  Kuzman Ražnjević,et al.  Handbook of Thermodynamic Tables and Charts , 1976 .

[34]  D D Wagman,et al.  Selected values of chemical thermodynamic properties , 1952 .

[35]  D D Wagman,et al.  Circular of the Bureau of Standards no. 500:: selected values of chemical thermodynamic properties , 1952 .