SOME FUTURE TRENDS IN DATA MINING

This chapter considers four key data mining areas which seem to have a promising future. These areas are: web mining, visual data mining, text data mining, and distributed data mining. The reason of their importance is to be found in the valuable applications they can support but also in the proliferation of the web and in the dramatic improvements in computing and storage media. Although they are currently limited by certain impediments, their future looks very exciting.

[1]  Peter Jackson,et al.  Natural Language Processing of Online Applications , 2002 .

[2]  Giovanni Felici,et al.  Data Mining and Knowledge Discovery Approaches Based on Rule Induction Techniques (Massive Computing) , 2006 .

[3]  Marti A. Hearst Untangling Text Data Mining , 1999, ACL.

[4]  Robert L. Grossman,et al.  Data mining standards initiatives , 2002, CACM.

[5]  C. V. Ramamoorthy,et al.  Knowledge and Data Engineering , 1989, IEEE Trans. Knowl. Data Eng..

[6]  Peter Jackson,et al.  Natural language processing for online applications : text retrieval, extraction and categorization , 2002 .

[7]  Hans-Peter Kriegel,et al.  Issues in visualizing large databases , 1997 .

[8]  Pak Chung Wong,et al.  Visualizing association rules for text mining , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[9]  Stefan Berchtold,et al.  Independence Diagrams: A Technique for Visual Data Mining , 1998, KDD.

[10]  Sourav S. Bhowmick,et al.  Research Issues in Web Data Mining , 1999, DaWaK.

[11]  Daniel S. Weld,et al.  Planning to gather inforrnation , 1996, AAAI 1996.

[12]  Ashwin Ram,et al.  Efficient Feature Selection in Conceptual Clustering , 1997, ICML.

[13]  Carl Gutwin,et al.  Domain-Specific Keyphrase Extraction , 1999, IJCAI.

[14]  Song-Chun Zhu,et al.  Statistical Modeling and Conceptualization of Visual Patterns , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Karuna Pande Joshi,et al.  Analysis of Data Mining Algorithms , 1997 .

[16]  Hillol Kargupta,et al.  Collective, Hierarchical Clustering from Distributed, Heterogeneous Data , 1999, Large-Scale Parallel Data Mining.

[17]  David Wai-Lok Cheung,et al.  Efficient Mining of Association Rules in Distributed Databases , 1996, IEEE Trans. Knowl. Data Eng..

[18]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[19]  Rajkumar Buyya,et al.  Grids and Grid technologies for wide‐area distributed computing , 2002, Softw. Pract. Exp..

[20]  Terence C. Fogarty,et al.  Genetic feature selection for clustering and classification , 1994 .

[21]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[22]  Salvatore J. Stolfo,et al.  Distributed data mining in credit card fraud detection , 1999, IEEE Intell. Syst..

[23]  Shashi Shekhar,et al.  Visual Data Mining: Framework and Algorithm Development , 2007 .

[24]  Jiawei Han,et al.  Resource and Knowledge Discovery in Global Information Systems: A Multiple Layered Database Approach , 1995 .

[25]  Yiming Yang,et al.  An Evaluation of Statistical Approaches to Text Categorization , 1999, Information Retrieval.

[26]  David E. Johnson,et al.  Maximizing Text-Mining Performance , 1999 .

[27]  Dennis DeCoste,et al.  Visualizing data mining models , 2001 .

[28]  Mario Cannataro,et al.  Distributed data mining on the grid , 2002, Future Gener. Comput. Syst..

[29]  Giovanni Felici,et al.  Improving search results with data mining in a thematic search engine , 2004, Comput. Oper. Res..

[30]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[31]  Dianne Cook,et al.  Manual Controls for High-Dimensional Data Projections , 1997 .

[32]  Ido Dagan,et al.  Knowledge Discovery in Textual Databases (KDT) , 1995, KDD.

[33]  Yiming Yang,et al.  Topic Detection and Tracking Pilot Study Final Report , 1998 .

[34]  Jaideep Srivastava,et al.  Data Mining for Network Intrusion Detection , 2002 .

[35]  Yoram Singer,et al.  Context-sensitive learning methods for text categorization , 1996, SIGIR '96.

[36]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[37]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[38]  Ah-Hwee Tan,et al.  Text Mining: The state of the art and the challenges , 2000 .

[39]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[40]  Tom M. Mitchell,et al.  Learning to Extract Symbolic Knowledge from the World Wide Web , 1998, AAAI/IAAI.

[41]  Roberto Battiti,et al.  Price-based Congestion-Control in Wi-Fi Hot Spots , 2003 .

[42]  Peter D. Turney Coherent Keyphrase Extraction via Web Mining , 2003, IJCAI.

[43]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[44]  Jaideep Srivastava,et al.  Web mining: information and pattern discovery on the World Wide Web , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[45]  Ido Dagan,et al.  Keyword-Based Browsing and Analysis of Large Document Sets , 1996 .

[46]  Shonali Krishnaswamy,et al.  An architecture to support distributed data mining services in e-commerce environments , 2000, Proceedings Second International Workshop on Advanced Issues of E-Commerce and Web-Based Information Systems. WECWIS 2000.

[47]  Curtis E. Dyreson Using an Incomplete Data Cube as a Summary Data Sieve , 1997, IEEE Data Eng. Bull..

[48]  Chris Clifton,et al.  Tools for privacy preserving distributed data mining , 2002, SKDD.

[49]  Tom Fawcett,et al.  Adaptive Fraud Detection , 1997, Data Mining and Knowledge Discovery.

[50]  Jaideep Srivastava,et al.  Web Mining , 2004, Data Mining and Knowledge Discovery.

[51]  Ronen Feldman,et al.  Visualization Techniques to Explore Data Mining Results for Document Collections , 1997, KDD.