Visual Designs for Binned Aggregation of Multi-Class Scatterplots

Point sets in 2D with multiple classes are a common type of data. A canonical visualization design for them are scatterplots, which do not scale to large collections of points. For these larger data sets, binned aggregation (or binning) is often used to summarize the data, with many possible design alternatives for creating effective visual representations of these summaries. There are a wide range of designs to show summaries of 2D multi-class point data, each capable of supporting different analysis tasks. In this paper, we explore the space of visual designs for such data, and provide design guidelines for different analysis scenarios. To support these guidelines, we compile a set of abstract tasks and ground them in concrete examples using multiple sample datasets. We then assess designs, and survey a range of design decisions, considering their appropriateness to the tasks. In addition, we provide a web-based implementation to experiment with design choices, supporting the validation of designs based on task needs.

[1]  Tamara Munzner,et al.  Visualization analysis & design , 2015 .

[2]  Michael Gleicher,et al.  Scatterplots: Tasks, Data, and Designs , 2018, IEEE Transactions on Visualization and Computer Graphics.

[3]  Daniel Gonçalves,et al.  Studying Color Blending Perception for Data Visualization , 2014, EuroVis.

[4]  Waldo R. Tobler,et al.  Choropleth Maps Without Class Intervals , 2010 .

[5]  K. Knuth Optimal Data-Based Binning for Histograms , 2006, physics/0605197.

[6]  Joseph A. Cottam,et al.  Abstract rendering: out-of-core rendering for information visualization , 2013, Electronic Imaging.

[7]  D. W. Scott A Note on Choices of Bivariate Histogram Bin Shape , 1985 .

[8]  Victoria Interrante,et al.  Weaving versus blending: a quantitative assessment of the information carrying capacities of two alternative methods for conveying multivariate data with color , 2006, APGV.

[9]  Colin Ware,et al.  Quantitative Texton Sequences for Legible Bivariate Maps , 2009, IEEE Transactions on Visualization and Computer Graphics.

[10]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[11]  Kun Zhou,et al.  Visual Abstraction and Exploration of Multi-class Scatterplots , 2014, IEEE Transactions on Visualization and Computer Graphics.

[12]  Cynthia A. Brewer,et al.  Mapping Mortality: Evaluating Color Schemes for Choropleth Maps , 1997 .

[13]  Jonathan C. Roberts,et al.  Visual comparison for information visualization , 2011, Inf. Vis..

[14]  Stephan Lewandowsky,et al.  Perception of clusters in statistical maps , 1993 .

[15]  Zhilin Li,et al.  Effectiveness of Cartogram for the Representation of Spatial Data , 2010 .

[16]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[17]  Sarah H. Creem-Regehr,et al.  Evaluating the Impact of Binning 2D Scalar Fields , 2017, IEEE Transactions on Visualization and Computer Graphics.

[18]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[19]  Niklas Elmqvist,et al.  Exploring the design space of composite visualization , 2012, 2012 IEEE Pacific Visualization Symposium.

[20]  Herbert A. Sturges,et al.  The Choice of a Class Interval , 1926 .

[21]  Melanie Tory Mental registration of 2D and 3D visualizations (an empirical study) , 2003, IEEE Visualization, 2003. VIS 2003..

[22]  Victoria Interrante,et al.  Effectively visualizing multi-valued flow data using color and texture , 2003, IEEE Visualization, 2003. VIS 2003..

[23]  Robert Kosara,et al.  Do Mechanical Turks dream of square pie charts? , 2010, BELIV '10.

[24]  Michael Gleicher,et al.  Splatterplots: Overcoming Overdraw in Scatter Plots , 2013, IEEE Transactions on Visualization and Computer Graphics.

[25]  Michael Gleicher,et al.  Task-driven evaluation of aggregation in time series visualization , 2014, CHI.

[26]  M. Wand Data-Based Choice of Histogram Bin Width , 1997 .

[27]  Bo Shan,et al.  Multivariate Spatial Visualization using GeoIcons and Image Charts , 2014 .

[28]  Colin P.D. Birch,et al.  Rectangular and hexagonal grids used for observation, experiment and simulation in ecology , 2007 .

[29]  Heidrun Schumann,et al.  A Design Space of Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.

[30]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[31]  R McGill,et al.  Graphical Perception and Graphical Methods for Analyzing Scientific Data , 1985, Science.

[32]  Bettina Speckmann,et al.  Kelp Diagrams: Point Set Membership Visualization , 2012, Comput. Graph. Forum.

[33]  Robert E. Roth,et al.  An Empirically-Derived Taxonomy of Interaction Primitives for Interactive Cartography and Geovisualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[34]  Daniel B. Carr,et al.  Scatterplot matrix techniques for large N , 1986 .

[35]  Heidrun Schumann,et al.  A new weaving technique for handling overlapping regions , 2010, AVI.

[36]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[37]  Giuseppe Santucci,et al.  Give Chance a Chance: Modeling Density to Enhance Scatter Plot Quality through Random Data Sampling , 2006, Inf. Vis..

[38]  W. Playfair The commercial and political atlas, representing, by means of stained copper-plate charts, the progress of the commerce, revenues, expenditure, and debts of England, during the whole of the eighteenth century , 1801 .

[39]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[40]  Daniel A. Keim,et al.  Variable Binned Scatter Plots , 2010, Inf. Vis..

[41]  Yu Han,et al.  Interactive visualization of high density streaming points with heat-map , 2014, 2014 International Conference on Smart Computing.

[42]  Peter Shirley,et al.  Fundamentals of computer graphics , 2018 .

[43]  Pierre Dragicevic,et al.  A Declarative Rendering Model for Multiclass Density Maps , 2019, IEEE Transactions on Visualization and Computer Graphics.

[44]  Min Chen,et al.  Glyph-based Visualization: Foundations, Design Guidelines, Techniques and Applications , 2013, Eurographics.

[45]  Jeffrey Heer,et al.  imMens: Real‐time Visual Querying of Big Data , 2013, Comput. Graph. Forum.

[46]  Colin P.D. Birch Diagonal and orthogonal neighbours in grid-based simulations: Buffon's stick after 200 years , 2006 .

[47]  Nicolas Hanusse,et al.  Large interactive visualization of density functions on big data infrastructure , 2015, 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV).

[48]  Vidya Setlur,et al.  An Engineering Model for Color Difference as a Function of Size , 2014, CIC.

[49]  Natalie Kerracher,et al.  Constructing and Evaluating Visualisation Task Classifications: Process and Considerations , 2017, Comput. Graph. Forum.

[50]  Daniel A. Keim,et al.  Generalized Scatter Plots , 2010, Inf. Vis..

[51]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[52]  Daniel B. Carr,et al.  Hexagon Mosaic Maps for Display of Univariate and Bivariate Geographical Data , 1992 .

[53]  Maureen C. Stone,et al.  In Color Perception, Size Matters , 2012, IEEE Computer Graphics and Applications.

[54]  Heidrun Schumann,et al.  The Design Space of Implicit Hierarchy Visualization: A Survey , 2011, IEEE Transactions on Visualization and Computer Graphics.

[55]  Stephen G. Kobourov,et al.  Evaluating Cartogram Effectiveness , 2015, IEEE Transactions on Visualization and Computer Graphics.

[56]  Bettina Speckmann,et al.  KelpFusion: a Hybrid Set Visualization Technique. , 2013, IEEE transactions on visualization and computer graphics.

[57]  M. Sheelagh T. Carpendale,et al.  Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[58]  Daniel A. Keim,et al.  Density Equalizing Distortion of Large Geographic Point Sets , 2009 .

[59]  Robert Kosara,et al.  Arcs, Angles, or Areas: Individual Data Encodings in Pie and Donut Charts , 2016, Comput. Graph. Forum.

[60]  Michael P. Peterson An Evaluation of Unclassed Crossed-Line Choropleth Mapping , 1979 .

[61]  Mark A. Livingston,et al.  An evaluation of methods for encoding multiple 2D spatial data , 2011, Electronic Imaging.

[62]  Sarah E. Battersby,et al.  Shapes on a plane: evaluating the impact of projection distortion on spatial binning , 2017 .

[63]  Mark A. Livingston,et al.  Evaluation of Multivariate Visualization on a Multivariate Task , 2012, IEEE Transactions on Visualization and Computer Graphics.

[64]  James R. Miller,et al.  Attribute Blocks: Visualizing Multiple Continuously Defined Attributes , 2007, IEEE Computer Graphics and Applications.

[65]  S. Lewandowsky,et al.  Displaying proportions and percentages , 1991 .

[66]  Luc Anselin,et al.  Interactive Techniques and Exploratory Spatial Data Analysis , 1996 .

[67]  Jeffrey Heer,et al.  Surprise! Bayesian Weighting for De-Biasing Thematic Maps , 2017, IEEE Transactions on Visualization and Computer Graphics.

[68]  Mary Czerwinski,et al.  Design Study of LineSets, a Novel Set Visualization Technique , 2011, IEEE Transactions on Visualization and Computer Graphics.

[69]  Issei Fujishiro,et al.  The elements of graphing data , 2005, The Visual Computer.

[70]  Tamara Munzner,et al.  A Multi-Level Typology of Abstract Visualization Tasks , 2013, IEEE Transactions on Visualization and Computer Graphics.