Kinetics of thermal degradation and estimation of lifetime for polypropylene particles: Effects of particle size

Abstract The thermal stability and degradation behavior of polypropylene (PP) particles having diameter varying from few micrometers to nanometers were studied by thermogravimetric analysis (TGA). The PP particles of average diameter ∼20 μm, ∼10 μm, ∼5 μm, ∼1 μm and

[1]  Xin-Gui Li,et al.  Thermal decomposition kinetics of thermotropic poly(oxybenzoate-co-oxynaphthoate) Vectra copolyester , 1999 .

[2]  P. Gijsman,et al.  New multi-cell imaging chemiluminescence (ICL) instrument to evaluate the stability of polymers , 2003 .

[3]  Meng Feng,et al.  Thermal stability and flammability of polypropylene/montmorillonite composites , 2004 .

[4]  James C. Seferis,et al.  Kinetic analysis of high‐resolution TGA variable heating rate data , 1993 .

[5]  Kathryn M. Butler,et al.  Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites , 2004 .

[6]  Derek J. Toop Theory of Life Testing and Use of Thermogravimetric Analysis to Predict the Thermal Life of Wire Enamels , 1971, IEEE Transactions on Electrical Insulation.

[7]  S. Ülkü,et al.  The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites , 2004 .

[8]  D. M. Wiles,et al.  The thermal stability of poly(aryl-ether–ether-ketone) as assessed by thermogravimetry† , 1989 .

[9]  A. Salis,et al.  Characterisation of Accurel MP1004 polypropylene powder and its use as a support for lipase immobilisation , 2003 .

[10]  Mei-Rong Huang,et al.  Thermal degradation of cellulose and cellulose esters , 1998 .

[11]  Xin-Gui Li,et al.  Kinetics of thermal degradation of thermotropic poly(p-oxybenzoate-co-ethylene terephthalate) by single heating rate methods , 1998 .

[12]  W. Sokół Operating parameters for a gas-liquid-solid fluidised bed bioreactor with a low density biomass support , 2001 .

[13]  W. Bednarski,et al.  Enhanced activity of intracellular lipases from Rhizomucor miehei and Yarrowia lipolytica by immobilization on biomass support particles , 2004 .

[14]  K. Zheng,et al.  A study of internal friction in polypropylene (PP) filled with nanometer-scale CaCO3 particles , 2004 .

[15]  A. Dasari,et al.  Susceptibility to scratch surface damage of wollastonite- and talc-containing polypropylene micrometric composites , 2004 .

[16]  R. Wilken,et al.  Surface radical analysis on plasma-treated polymers , 1999 .

[17]  Mingshu Yang,et al.  Thermal stability and crystallization kinetics of isotactic polypropylene/organomontmorillonite nanocomposites , 2003 .

[18]  D. Yan,et al.  Thermal decomposition kinetics of thermotropic copolyesters made from trans‐p‐hydroxycinnamic acid and p‐hydroxybenzoic acid , 2004 .

[19]  C. Fraser,et al.  Metal-Centered Star Block Copolymers: Amphiphilic Iron Tris(bipyridine)-Centered Polyoxazolines and Their Chemical Fragmentation to Bipyridine-Centered BAB Triblock Copolymers , 1999 .

[20]  J. Gajewski,et al.  Charging of metal probes by a flux of particles , 2001 .

[21]  Tao Tang,et al.  Synergistic effect of supported nickel catalyst with intumescent flame-retardants on flame retardancy and thermal stability of polypropylene , 2006 .

[22]  Y. Tu,et al.  Formation of novel polymeric nanoparticles. , 2001, Accounts of chemical research.

[23]  Qi Zhang,et al.  Shell Cross-Linked Nanoparticles Containing Hydrolytically Degradable, Crystalline Core Domains , 2000 .

[24]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.

[25]  Juzheng Liu,et al.  Production of Ordered Arrays of Polymer Nanoparticles , 2003 .

[26]  K. Kar,et al.  High molecular weight polypropylene nanospheres: Synthesis and characterization , 2007 .

[27]  Arobindo Chatterjee,et al.  Thermal stability of polypropylene/carbon nanofiber composite , 2006 .

[28]  Seungdo Kim,et al.  Characterization of thermal reaction by peak temperature and height of DTG curves , 1995 .

[29]  B. Wunderlich,et al.  Phase transitions in mesophase macromolecules. V. Transitions in poly(oxy‐1,4‐phenylene carbonyl‐co‐oxy‐2,6‐naphthaloyl) , 1985 .

[30]  Xin-Gui Li,et al.  Thermal decomposition kinetics of liquid crystalline p-oxybenzoate/ethylene terephthalate/third monomer terpolymers , 1999 .

[31]  David S. Germack,et al.  A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. , 2002, Journal of the American Chemical Society.

[32]  Mechanical Property of Metallic Closed Cellular Materials Containing Organic Material for Passive Damping and Energy-Absorbing Systems , 2001 .

[33]  Thomas Kietzke,et al.  Novel approaches to polymer blends based on polymer nanoparticles , 2003, Nature materials.

[34]  W. Fan,et al.  Preparation and thermal stability of polypropylene/montmorillonite nanocomposites , 2003 .

[35]  B. Al-Duri,et al.  Characterisation of a novel support for biocatalysis in supercritical carbon dioxide , 2001 .

[36]  Canhui Lu,et al.  Preparation of ultrafine polypropylene/iron composite powders through pan-milling , 2004 .

[37]  J. Hughes,et al.  Electrostatic enhancement of dust and allergen removal from carpets , 2001 .

[38]  M. Modesti,et al.  Thermal behaviour of compatibilised polypropylene nanocomposite: Effect of processing conditions , 2006 .

[39]  Hideo Yamamoto,et al.  Estimation of electrostatic charge distribution of flowing toner particles in contact with metals , 2003 .

[40]  W. L. Chang Decomposition Behavior of Polyurethanes via Mathematical Simulation , 1994 .