Halogen Bonds in Novel Polyhalogen Monoanions.

Polyhalogen monoanions [X2n+1 ]- (X=Cl and Br; n=1, 2, 3, 4, and 5) have been systematically studied using the block-localized wave function (BLW) method, which offers a valence bond (VB) analysis. For each species, the most stable isomer can be described as a central halide anion X- non-classically bonded to a number of dihalogen molecules X2 via "halogen bonds". VB analyses confirm the dominant role of the charge-transfer interaction between the lone pair on X- and the σ-anti-bonding orbital of X2 molecule (n→σ*) in X3- and higher analogues. Thus, our study demonstrates that these halogen bonds are essentially dative covalent interactions. Importantly, the charge-transfer interaction between [X2n-1 ]- and X2 decreases with the increasing n, in accord with the weakening of the Lewis basicity as characterized by the corresponding HOMO energy. The reduction of the charge transfer interaction underscores the reduction of covalence in halogen bonds in [X2n+1 ]- . This tendency highlights the anti-cooperative effect in polyhalogen monoanions. All in all, the halogen bond between X- and nX2 molecules exhibits the same trends as in X- with a single X2 molecule. In other words, halogen bonding in the larger clusters derives from the same bonding mechanism as the [X3 ]- anion. As such, the X- ⋅⋅⋅X2 halogen bond at different bond lengths forms a gauge of covalence for the entire [X2n+1 ]- family.

[1]  J. Herbert,et al.  Energy Decomposition Analysis with a Stable Charge-Transfer Term for Interpreting Intermolecular Interactions. , 2016, Journal of chemical theory and computation.

[2]  G. N. Sastry,et al.  Cooperativity in Noncovalent Interactions. , 2016, Chemical reviews.

[3]  Sason Shaik,et al.  The origins of the directionality of noncovalent intermolecular interactions# , 2016, J. Comput. Chem..

[4]  S. Riedel,et al.  A 2D Polychloride Network Held Together by Halogen-Halogen Interactions. , 2015, Angewandte Chemie.

[5]  S. Riedel,et al.  Polyfluorides and Neat Fluorine as Host Material in Matrix-Isolation Experiments. , 2015, Chemistry.

[6]  S. Riedel,et al.  Ein durch Halogen‐Halogen‐Wechselwirkungen zusammengehaltenes 2D‐Polychloridnetzwerk , 2015 .

[7]  M. Head‐Gordon,et al.  An energy decomposition analysis for second-order Møller-Plesset perturbation theory based on absolutely localized molecular orbitals. , 2015, The Journal of chemical physics.

[8]  S. Riedel,et al.  Fluorreiche Fluoride – neue Erkenntnisse über die Chemie von Polyfluoridanionen , 2015 .

[9]  S. Riedel,et al.  Fluorine-Rich Fluorides: New Insights into the Chemistry of Polyfluoride Anions. , 2015, Angewandte Chemie.

[10]  K. Rissanen,et al.  Halogen bonds with coordinative nature: halogen bonding in a S–I+–S iodonium complex , 2015 .

[11]  Pierre Kennepohl,et al.  Evidence for Halogen Bond Covalency in Acyclic and Interlocked Halogen-Bonding Receptor Anion Recognition , 2014, Journal of the American Chemical Society.

[12]  Sason Shaik,et al.  On The Nature of the Halogen Bond. , 2014, Journal of chemical theory and computation.

[13]  Ekaterina I Izgorodina,et al.  New SCS- and SOS-MP2 Coefficients Fitted to Semi-Coulombic Systems. , 2014, Journal of chemical theory and computation.

[14]  S. Riedel,et al.  Recent Discoveries of Polyhalogen Anions – from Bromine to Fluorine , 2014 .

[15]  F. Pirani,et al.  Intermolecular interaction in the H2S-H2 complex: molecular beam scattering experiments and ab-inito calculations. , 2014, The journal of physical chemistry. A.

[16]  S. Riedel,et al.  Brominations with Pr4NBr9 as a Solid Reagent with High Reactivity and Selectivity , 2014 .

[17]  M. Richter,et al.  Iod‐Iod‐Bindungen machen Tetra(diiod)chlorid, [Cl(I2)4]−, planar , 2013 .

[18]  M. Richter,et al.  Iodine-iodine bonding makes tetra(diiodine)chloride, [Cl(I2)4]-, planar. , 2013, Angewandte Chemie.

[19]  I. Krossing,et al.  [HMIM][Br9]: a Room-temperature Ionic Liquid Based on a Polybromide Anion , 2013 .

[20]  E. Arunan,et al.  The X-C···Y (X = O/F, Y = O/S/F/Cl/Br/N/P) 'carbon bond' and hydrophobic interactions. , 2013, Physical chemistry chemical physics : PCCP.

[21]  Timothy Clark,et al.  Halogen bonding and other σ-hole interactions: a perspective. , 2013, Physical chemistry chemical physics : PCCP.

[22]  Strukturbestimmung des Undecabromids [Br11]−† , 2013 .

[23]  S. Riedel,et al.  Structural evidence for undecabromide [Br11]-. , 2013, Angewandte Chemie.

[24]  Jan M. L. Martin,et al.  Halogen Bonds: Benchmarks and Theoretical Analysis. , 2013, Journal of chemical theory and computation.

[25]  Timothy Clark,et al.  σ-Holes: σ-Holes , 2013 .

[26]  Peifeng Su,et al.  Ab initio nonorthogonal valence bond methods , 2013 .

[27]  Hans‐Jörg Himmel,et al.  Wrapping an organic reducing reagent in a cationic boron complex and its use in the synthesis of polyhalide monoanionic networks. , 2012, Chemistry.

[28]  Fernando Pirani,et al.  Revealing charge-transfer effects in gas-phase water chemistry. , 2012, Accounts of chemical research.

[29]  Mathias A Ellwanger,et al.  Polychloride monoanions from [Cl3]- to [Cl9]- : a Raman spectroscopic and quantum chemical investigation. , 2012, Chemistry.

[30]  Kelling J. Donald,et al.  Halogen bonding in DNA base pairs. , 2012, Journal of the American Chemical Society.

[31]  S. Riedel,et al.  Struktureller Beweis für ein höheres Polybromidmonoanion: Untersuchung von [N(C3H7)][Br9]† , 2011 .

[32]  Mathias A Ellwanger,et al.  Structural proof for a higher polybromide monoanion: investigation of [N(C3H7)4][Br9]. , 2011, Angewandte Chemie.

[33]  C. Feldmann,et al.  [(Ph)3PBr][Br7], [(Bz)(Ph)3P]2[Br8], [(n-Bu)3MeN]2[Br20], [C4MPyr]2[Br20], and [(Ph)3PCl]2[Cl2I14]: extending the horizon of polyhalides via synthesis in ionic liquids. , 2011, Inorganic chemistry.

[34]  F. Pichierri Structure and bonding in polybromide anions Br−(Br2)n (n = 1–6) , 2011 .

[35]  Zhaofu Fei,et al.  Mass spectrometric and theoretical study of polyiodides: the connection between solid state, solution, and gas phases. , 2011, Inorganic chemistry.

[36]  Sason Shaik,et al.  Classical valence bond approach by modern methods. , 2011, Chemical reviews.

[37]  Jiali Gao,et al.  Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. , 2011, Physical chemistry chemical physics : PCCP.

[38]  D. Banner,et al.  Systematische Untersuchung von Halogenbrücken in Protein‐Ligand‐ Wechselwirkungen , 2011 .

[39]  François Diederich,et al.  Systematic investigation of halogen bonding in protein-ligand interactions. , 2011, Angewandte Chemie.

[40]  P. Simoncic,et al.  Raman spectroscopic investigation of tetraethylammonium polybromides. , 2010, Inorganic chemistry.

[41]  L. Roncaratti,et al.  Charge-transfer energy in the water-hydrogen molecular aggregate revealed by molecular-beam scattering experiments, charge displacement analysis, and ab initio calculations. , 2010, Journal of the American Chemical Society.

[42]  Anthony C Legon,et al.  The halogen bond: an interim perspective. , 2010, Physical chemistry chemical physics : PCCP.

[43]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[44]  S. Riedel,et al.  Polyfluoride anions, a matrix-isolation and quantum-chemical investigation. , 2010, Inorganic chemistry.

[45]  Pierangelo Metrangolo,et al.  Halogen bonding in metal-organic-supramolecular networks , 2010 .

[46]  R. Bader,et al.  Bond paths are not chemical bonds. , 2009, The journal of physical chemistry. A.

[47]  P. Hiberty,et al.  Charge-shift bonding and its manifestations in chemistry. , 2009, Nature chemistry.

[48]  K. Shankland,et al.  Rational modification of the hierarchy of intermolecular interactions in molecular crystal structures by using tunable halogen bonds. , 2009, Chemistry.

[49]  Artur Michalak,et al.  A Combined Charge and Energy Decomposition Scheme for Bond Analysis. , 2009, Journal of chemical theory and computation.

[50]  Jean-Philip Piquemal,et al.  Fragment-Localized Kohn-Sham Orbitals via a Singles Configuration-Interaction Procedure and Application to Local Properties and Intermolecular Energy Decomposition Analysis. , 2008, Journal of chemical theory and computation.

[51]  Sebastian Höfener,et al.  Scope and limitations of the SCS-MP2 method for stacking and hydrogen bonding interactions. , 2008, Physical chemistry chemical physics : PCCP.

[52]  T. Takatani,et al.  Performance of spin-component-scaled Møller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions. , 2007, Physical chemistry chemical physics : PCCP.

[53]  Rustam Z. Khaliullin,et al.  Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. , 2007, The journal of physical chemistry. A.

[54]  Yuchun Lin,et al.  Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. , 2007, The journal of physical chemistry. A.

[55]  Chérif F. Matta,et al.  The Quantum Theory of Atoms in Molecules , 2007 .

[56]  A. Legon The Interaction of Dihalogens and Hydrogen Halides with Lewis Bases in the Gas Phase: An Experimental Comparison of the Halogen Bond and the Hydrogen Bond , 2007 .

[57]  Timothy Clark Paul von Ragué Schleyer 75th birthday Festschrift , 2006, Journal of molecular modeling.

[58]  Wei Wu,et al.  XMVB : A program for ab initio nonorthogonal valence bond computations , 2005, J. Comput. Chem..

[59]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Hiberty,et al.  What makes the trifluoride anion F3 - so special? A breathing-orbital valence bond ab initio study. , 2004, Journal of the American Chemical Society.

[61]  John R. Miller,et al.  Charge Transfer on the Nanoscale: Current Status , 2003 .

[62]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[63]  Z. Ẑák,et al.  Diphenyldichlorophosphonium trichloride-chlorine solvate 1:1, [PPh2Cl2]+Cl(3)(-).Cl2: an ionic form of diphenyltrichlorophosphorane. Crystal structures of [PPh2Cl2]+Cl(3)(-).Cl2 and [(PPh2Cl2)+]2[InCl5](2-). , 2003, Inorganic chemistry.

[64]  E. Molins,et al.  From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems , 2002 .

[65]  Y. Mo,et al.  Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach , 2000 .

[66]  Y. Mo,et al.  Theoretical analysis of electronic delocalization , 1998 .

[67]  F. Mota,et al.  The symmetry breaking problem in the triflouride anion: A multireference approach , 1996 .

[68]  Mark S. Gordon,et al.  Energy Decomposition Analyses for Many-Body Interaction and Applications to Water Complexes , 1996 .

[69]  Eric D. Glendening,et al.  Natural energy decomposition analysis: An energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions , 1994 .

[70]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[71]  A. Legon The nature of ammonium and methylammonium halides in the vapour phase: hydrogen bonding versus proton transfer , 1993 .

[72]  G. Scuseria,et al.  The trifluoride anion: a difficult challenge for quantum chemistry , 1992 .

[73]  William H. Fink,et al.  Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer , 1987 .

[74]  J. C. Martin,et al.  The structure and stability of the 10-F-2 trifluoride ion, a compound of a hypervalent first row element , 1985 .

[75]  J. Richardson,et al.  Reaction of dimethylcyanamide with sulfur dichloride: X-ray crystal structures of the N,N'-(chlorosulfoniumylidene)bis(N1,N1-dimethylchloroformamidine) complexes [(Me2NC(Cl)N)2SCl]+X− (X−=Cl−, Cl3−) and the hydrolysis product [Me2NC(Cl)NH2]+Cl−•H2O , 1985 .

[76]  Paul S. Bagus,et al.  A new analysis of charge transfer and polarization for ligand–metal bonding: Model studies of Al4CO and Al4NH3 , 1984 .

[77]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[78]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[79]  B. H. Chirgwin,et al.  The electronic structure of conjugated systems. VI , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.