Clonal Origin and Evolution of a Transmissible Cancer

The transmissible agent causing canine transmissible venereal tumor (CTVT) is thought to be the tumor cell itself. To test this hypothesis, we analyzed genetic markers including major histocompatibility (MHC) genes, microsatellites, and mitochondrial DNA (mtDNA) in naturally occurring tumors and matched blood samples. In each case, the tumor is genetically distinct from its host. Moreover, tumors collected from 40 dogs in 5 continents are derived from a single neoplastic clone that has diverged into two subclades. Phylogenetic analyses indicate that CTVT most likely originated from a wolf or an East Asian breed of dog between 200 and 2500 years ago. Although CTVT is highly aneuploid, it has a remarkably stable genotype. During progressive growth, CTVT downmodulates MHC antigen expression. Our findings have implications for understanding genome instability in cancer, natural transplantation of allografts, and the capacity of a somatic cell to evolve into a transmissible parasite.

[1]  H. Ellegren,et al.  Unequal Contribution of Sexes in the Origin of Dog Breeds , 2006, Genetics.

[2]  M. Oshimura,et al.  Chromosomal banding patterns in primary and transplanted venereal tumors of the dog. , 1973, Journal of the National Cancer Institute.

[3]  J. E. Rice,et al.  Multiple and ancient origins of the domestic dog. , 1997, Science.

[4]  A. Shalev,et al.  Lack of beta 2-microglobulin on the surface of canine transmissible venereal tumor cells. , 1984, Journal of the National Cancer Institute.

[5]  Valerie Combaret,et al.  Real-time PCR based on SYBR-Green I fluorescence: An alternative to the TaqMan assay for a relative quantification of gene rearrangements, gene amplifications and micro gene deletions , 2003, BMC biotechnology.

[6]  E. Shakhnovich,et al.  Genetic instability and the quasispecies model. , 2006, Journal of theoretical biology.

[7]  Á. Carracedo,et al.  mtDNA mutations in tumors of the central nervous system reflect the neutral evolution of mtDNA in populations , 2004, Oncogene.

[8]  J. Holmes Measurement of the rate of death of canine transmissible venereal tumour cells transplanted into dogs and nude mice. , 1981, Research in veterinary science.

[9]  P. Nowell,et al.  Chromosome studies of a transplanted and a primary canine venereal sarcoma. , 1965, Journal of the National Cancer Institute.

[10]  H. Bandelt,et al.  Median-joining networks for inferring intraspecific phylogenies. , 1999, Molecular biology and evolution.

[11]  D. Givol,et al.  Common origin of transmissible venereal tumors (TVT) in dogs. , 1987, Oncogene.

[12]  D. Rigal,et al.  Immunophenotype of the canine transmissible venereal tumour. , 1997, Veterinary immunology and immunopathology.

[13]  J. Lundeberg,et al.  Genetic Evidence for an East Asian Origin of Domestic Dogs , 2002, Science.

[14]  R. MacKie,et al.  Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. , 2003, The New England journal of medicine.

[15]  K. Liao,et al.  Tumor-Infiltrating Lymphocyte Secretion of IL-6 Antagonizes Tumor-Derived TGF-β1 and Restores the Lymphokine-Activated Killing Activity1 , 2004, The Journal of Immunology.

[16]  R. H.J.MULLE THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE , 2002 .

[17]  H. Cooper,et al.  Mosquito Transmission of a Reticulum Cell Sarcoma of Hamsters , 1965, Science.

[18]  H. Ellegren,et al.  MHC class II genes in European wolves: a comparison with dogs , 2002, Immunogenetics.

[19]  N. Rosenberg distruct: a program for the graphical display of population structure , 2003 .

[20]  W. Marks,et al.  Transplant tumor registry: donor related malignancies , 2002, Transplantation.

[21]  M. Nowak,et al.  Dynamics of cancer progression , 2004, Nature Reviews Cancer.

[22]  Mel Greaves,et al.  Cancer causation: the Darwinian downside of past success? , 2002, The Lancet. Oncology.

[23]  David Swofford,et al.  PAUP* 4.0 : Phylogenetic Analysis Using Parsimony , 2002 .

[24]  N. Restifo,et al.  Natural selection of tumor variants in the generation of “tumor escape” phenotypes , 2002, Nature Immunology.

[25]  K. Ray,et al.  A Line 1 insertion in the Factor IX gene segregates with mild hemophilia B in dogs , 2003, Mammalian Genome.

[26]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[27]  K. Liao,et al.  Identification of Canine Transmissible Venereal Tumor Cells Using in Situ Polymerase Chain Reaction and the Stable Sequence of the Long Interspersed Nuclear Element , 2003, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[28]  Menna E. Jones,et al.  Genetic diversity and population structure of Tasmanian devils, the largest marsupial carnivore , 2004, Molecular ecology.

[29]  J A Gerlach,et al.  Nomenclature for factors of the dog major histocompatibility system (DLA), 2000: Second report of the ISAG DLA Nomenclature Committee. , 1999, Tissue antigens.

[30]  C. Mecucci,et al.  Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors , 2003, Nature Medicine.

[31]  A. Harmelin,et al.  Use of a murine xenograft model for canine transmissible venereal tumor. , 2001, American journal of veterinary research.

[32]  T. Saitoh,et al.  Polymorphic microsatellite DNA markers in the grey red‐backed vole Clethrionomys rufocanus bedfordiae , 1995, Molecular ecology.

[33]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[34]  W. Thomson,et al.  Evidence for extensive DLA polymorphism in different dog populations. , 2002, Tissue antigens.

[35]  S. Hung,et al.  Proliferation characteristics of canine transmissible venereal tumor. , 2001, Anticancer research.

[36]  R. Storb,et al.  Dog class I gene DLA-88 histocompatibility typing by PCR-SSCP and sequencing. , 2000, Tissue antigens.

[37]  Steven A. Frank,et al.  Models of Parasite Virulence , 1996, The Quarterly Review of Biology.

[38]  S. Bouma Tasmanian Devil: A Unique and Threatened Animal [Book Review] , 2006 .

[39]  N. Ishiguro,et al.  Molecular structure of canine LINE-1 elements in canine transmissible venereal tumor. , 1999, Animal genetics.

[40]  B. Rinkevich Primitive immune systems: Are your ways my ways? , 2004, Immunological reviews.

[41]  R. Schreiber,et al.  Cancer immunoediting: from immunosurveillance to tumor escape , 2002, Nature Immunology.

[42]  Natalie,et al.  Genetic Structure of the Purebred Domestic Dog , 2004 .

[43]  J. B. Cohen,et al.  "Retroposon" insertion into the cellular oncogene c-myc in canine transmissible venereal tumor. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[44]  P. Moore,et al.  Localized and Disseminated Histiocytic Sarcoma of Dendritic Cell Origin in Dogs , 2002, Veterinary pathology.

[45]  A. Das,et al.  Review of Canine Transmissible Venereal Sarcoma , 2000, Veterinary Research Communications.

[46]  Bharati Bapat,et al.  Genetic instability in human tumors. , 2006, EXS.

[47]  P. Venta,et al.  A PCR-RSP Csp6I site in the canine DLA-DQA1 gene. , 1999, Animal genetics.

[48]  Hui Shen,et al.  Mutation patterns at dinucleotide microsatellite loci in humans. , 2002, American journal of human genetics.

[49]  D. Cohen The canine transmissible venereal tumor: a unique result of tumor progression. , 1985, Advances in cancer research.

[50]  W. B. Martin,et al.  A study of the cytology and karyotype of the canine transmissible venereal tumour. , 1969, Research in veterinary science.

[51]  A. Pearse,et al.  Allograft theory: Transmission of devil facial-tumour disease , 2006, Nature.

[52]  L W Buss,et al.  Somatic cell parasitism and the evolution of somatic tissue compatibility. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[53]  W. Thomson,et al.  Extensive interbreed, but minimal intrabreed, variation of DLA class II alleles and haplotypes in dogs. , 2002, Tissue antigens.

[54]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[55]  H. Cooper,et al.  CHROMOSOME STUDIES OF A CONTAGIOUS RETICULUM CELL SARCOMA OF THE SYRIAN HAMSTER. , 1964, Journal of the National Cancer Institute.

[56]  James A. Cuff,et al.  Genome sequence, comparative analysis and haplotype structure of the domestic dog , 2005, Nature.