Nonlinear system identification using heterogeneous multiple models
暂无分享,去创建一个
B. Marx | J. Ragot | D. Maquin | R. Orjuela
[1] Michio Sugeno,et al. Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.
[2] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[3] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[4] Dilwyn Edwards,et al. Guide to Mathematical Modeling , 1990 .
[5] Dimitar Filev. Fuzzy modeling of complex systems , 1991, Int. J. Approx. Reason..
[6] T. Johansen,et al. Constructing NARMAX models using ARMAX models , 1993 .
[7] Stephen A. Billings,et al. Nonlinear model validation using correlation tests , 1994 .
[8] Junhong Nie,et al. A neural approach to fuzzy modeling , 1994, Proceedings of 1994 American Control Conference - ACC '94.
[9] P. Gawthrop. Continuous-time local state local model networks , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.
[10] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[11] David J. Murray-Smith,et al. Nonlinear system modelling using output error estimation of a local model network , 1996 .
[12] Richard D. Braatz,et al. On the "Identification and control of dynamical systems using neural networks" , 1997, IEEE Trans. Neural Networks.
[13] Roderick Murray-Smith,et al. Multiple Model Approaches to Modelling and Control , 1997 .
[14] Eric Walter,et al. Identification of Parametric Models: from Experimental Data , 1997 .
[15] Robert Babuska,et al. Fuzzy Modeling for Control , 1998 .
[16] John Yen,et al. Improving the interpretability of TSK fuzzy models by combining global learning and local learning , 1998, IEEE Trans. Fuzzy Syst..
[17] W. Leithead,et al. Analytic framework for blended multiple model systems using linear local models , 1999 .
[18] José Ragot,et al. Non-linear dynamic system identification: A multi-model approach , 1999 .
[19] F. Doyle,et al. Multiple Model Approach for CSTR Control , 1999 .
[20] J. Abonyi,et al. Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).
[21] L. Jain,et al. Fuzzy sets and their application to clustering and training , 2000 .
[22] O. Nelles. Nonlinear System Identification , 2001 .
[23] Gail D. Baura,et al. Nonlinear System Identification , 2002 .
[24] L. Ljung,et al. Identification of composite local linear state-space models using a projected gradient search , 2002 .
[25] G. Irwin,et al. On Velocity‐Based Local Model Networks For Nonlinear Identification , 2003 .
[26] Tor Arne Johansen,et al. Multiobjective identification of Takagi-Sugeno fuzzy models , 2003, IEEE Trans. Fuzzy Syst..
[27] Jonathan R. Partington,et al. On linear models for nonlinear systems , 2003, Autom..
[28] Ravindra D. Gudi,et al. Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space , 2003 .
[29] K. Burnham,et al. EXTENDED GLOBAL TOTAL LEAST SQUARE APPROACH TO MULTIPLE-MODEL IDENTIFICATION , 2005 .
[30] Didier Maquin,et al. NON-LINEAR SYSTEM IDENTIFICATION USING UNCOUPLED STATE MULTIPLE-MODEL APPROACH , 2006 .
[31] MULTIPLE MODEL WEIGHT ESTIMATION FOR MODELS WITH NO COMMON STATE , 2006 .
[32] Marcin Witczak,et al. A neuro-fuzzy multiple-model observer approach to robust fault diagnosis based on the DAMADICS benchmark problem , 2006 .
[33] Shuning Wang,et al. Identification of dynamic systems using Piecewise-Affine basis function models , 2007, Autom..
[34] Michel Verhaegen,et al. Multiple Model Weight Estimation for Models With No Common State , 2007 .
[35] Kiriakos Kiriakidis,et al. Nonlinear Modeling by Interpolation Between Linear Dynamics and Its Application in Control , 2007 .
[36] Didier Theilliol,et al. Fault Tolerant Control Design For Polytopic LPV Systems , 2007, Int. J. Appl. Math. Comput. Sci..
[37] Gordon Lightbody,et al. Nonlinear system identification: From multiple-model networks to Gaussian processes , 2008, Eng. Appl. Artif. Intell..
[38] Didier Maquin,et al. State estimation for non-linear systems using a decoupled multiple model , 2008, Int. J. Model. Identif. Control..
[39] B. Marx,et al. On the simultaneous state and unknown input estimation of complex systems via a multiple model strategy , 2009 .
[40] Didier Maquin,et al. New fault tolerant control strategies for nonlinear Takagi-Sugeno systems , 2012, Int. J. Appl. Math. Comput. Sci..
[41] Peng Shi,et al. Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model , 2012, Int. J. Appl. Math. Comput. Sci..