MULTIPLE SHRINKAGE GENERALIZATIONS OF THE JAMES-STEIN ESTIMATOR
暂无分享,去创建一个
[1] C. Stein. Confidence Sets for the Mean of a Multivariate Normal Distribution , 1962 .
[2] L. Brown. Admissible Estimators, Recurrent Diffusions, and Insoluble Boundary Value Problems , 1971 .
[3] C. Morris,et al. Non-Optimality of Preliminary-Test Estimators for the Mean of a Multivariate Normal Distribution , 1972 .
[4] B. Efron,et al. Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .
[5] B. Efron,et al. Data Analysis Using Stein's Estimator and its Generalizations , 1975 .
[6] I. Good. Some history of the hierarchical Bayesian methodology , 1980 .
[7] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[8] James O. Berger,et al. Selecting a Minimax Estimator of a Multivariate Normal Mean , 1982 .
[9] C. Morris. Parametric Empirical Bayes Inference: Theory and Applications , 1983 .
[10] James O. Berger,et al. Bayesian input in Stein estimation and a new minimax empirical Bayes estimator , 1984 .
[11] Minimax estimators that shift towards a hypersphere for location vectors of spherically symmetric distributions , 1985 .
[12] L. M. Berliner,et al. Robust Bayes and Empirical Bayes Analysis with $_\epsilon$-Contaminated Priors , 1986 .
[13] E. George. Minimax Multiple Shrinkage Estimation , 1986 .
[14] E. George. A formal bayes multiple shrinkage estimator , 1986 .