The Complexity of Nonlinear Separable Optimization

tions (with no additional properties assumed). The polytope {xlAx_~b} is bounded, or alternatively, if unbounded, we assume that there is a known bound on the optimal solution, which, when incorporated into the constraint set, will convert it into a bounded polytope. A is an mxn integer matrix, and b an integer vector of dimension m. We denote the maximum absolute value of the subdeterminants of A by A.

[1]  Dorit S. Hochbaum,et al.  Asymptotically Optimal Linear Algorithm for the Minimum k-Cut in a Random Graph , 1990, SIAM J. Discret. Math..

[2]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[3]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[4]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: practical and theoretical results , 1987 .

[5]  Dorit S. Hochbaum,et al.  When are NP-hard location problems easy? , 1984, Ann. Oper. Res..

[6]  Dorit S Hochbaum The Concept of Best Probability in the Analysis of Approximation Algorithms , 1991 .

[7]  David B. Shmoys,et al.  A packing problem you can almost solve by sitting on your suitcase , 1986 .

[8]  David B. Shmoys,et al.  Best possible heuristics for the bottleneck wandering salesperson and bottleneck vehicle routing problem , 1986 .

[9]  Dorit S. Hochbaum,et al.  Efficient bounds for the stable set, vertex cover and set packing problems , 1983, Discret. Appl. Math..

[10]  András Frank,et al.  An application of simultaneous diophantine approximation in combinatorial optimization , 1987, Comb..

[11]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[12]  Wolfgang Maass,et al.  Approximation Schemes for Covering and Packing Problems in Robotics and VLSI , 1984, STACS.

[13]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[14]  J. George Shanthikumar,et al.  Convex separable optimization is not much harder than linear optimization , 1990, JACM.

[15]  Dorit S. Hochbaum,et al.  Polynomial algorithm for the k-cut problem , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[16]  Wolfgang Maass,et al.  Fast Approximation Algorithms for a Nonconvex Covering Problem , 1987, J. Algorithms.

[17]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[18]  Takao Nishizeki,et al.  A Better than "Best Possible" Algorithm to Edge Color Multigraphs , 1986, J. Algorithms.

[19]  Dorit S. Hochbaum,et al.  A fast approximation algorithm for the multicovering problem , 1986, Discret. Appl. Math..

[20]  D. Hochbaum Easy Solutions for the K–Center Problem or the Dominating Set Problem on Random Graphs , 1985 .

[21]  Awi Federgruen,et al.  The Greedy Procedure for Resource Allocation Problems: Necessary and Sufficient Conditions for Optimality , 1986, Oper. Res..

[22]  William J. Cook,et al.  Sensitivity theorems in integer linear programming , 1986, Math. Program..

[23]  David B. Shmoys,et al.  A Polynomial Approximation Scheme for Machine Scheduling on Uniform Processors: Using the Dual Approximation Approach , 1986, FSTTCS.

[24]  Jadranka Skorin-Kapov,et al.  Some proximity and sensitivity results in quadratic integer programming , 1990, Math. Program..

[25]  David B. Shmoys,et al.  Powers of graphs: A powerful approximation technique for bottleneck problems , 1984, STOC '84.

[26]  Arie Segev,et al.  Analysis of a flow problem with fixed charges , 1989, Networks.

[27]  N. Alon,et al.  An algorithm for the detection and construction of Monge sequences , 1989 .

[28]  András Frank,et al.  An application of simultaneous approximation in combinatorial optimization , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[29]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[30]  Dorit S. Hochbaum,et al.  A Fast Perfect-Matching Algorithm in Random Graphs , 1990, SIAM J. Discret. Math..

[31]  Ron Shamir,et al.  An O(n log2 n) Algorithm for the Maximum Weighted Tardiness Problem , 1989, Inf. Process. Lett..

[32]  Ron Shamir,et al.  Minimizing the number of tardy job units under release time constraints , 1990, Discret. Appl. Math..

[33]  Dorit S. Hochbaum,et al.  The Linzertorte problem, or a unified approach to painting, baking and weaving , 1986, Discret. Appl. Math..

[34]  Wolfgang Maass,et al.  Approximation schemes for covering and packing problems in image processing and VLSI , 1985, JACM.

[35]  S HochbaumDorit,et al.  A unified approach to approximation algorithms for bottleneck problems , 1986 .