The McCoy Condition on Ore Extensions

Nielsen [29] proved that all reversible rings are McCoy and gave an example of a semicommutative ring that is not right McCoy. When R is a reversible ring with an (α, δ)-condition, namely (α, δ)-compatibility, we observe that R satisfies a McCoy-type property, in the context of Ore extension R[x; α, δ], and provide rich classes of reversible (semicommutative) (α, δ)-compatible rings. It is also shown that semicommutative α-compatible rings are linearly α-skew McCoy and that linearly α-skew McCoy rings are Dedekind finite. Moreover, several extensions of skew McCoy rings and the zip property of these rings are studied.

[1]  Yueming Xiang,et al.  ORE EXTENSIONS OF SKEW π-ARMENDARIZ RINGS , 2013 .

[2]  A. Moussavi,et al.  On Skew Armendariz of Laurent Series Type Rings , 2012 .

[3]  E. Hashemi Extensions of zip rings , 2010 .

[4]  T. Kwak,et al.  The McCoy Condition on Skew Polynomial Rings , 2009 .

[5]  M. Kosan Extensions of Rings Having McCoy Condition , 2009, Canadian mathematical bulletin.

[6]  N. Mahdou,et al.  On Armendariz rings. , 2009 .

[7]  Pace P. Nielsen,et al.  McCoy rings and zero-divisors , 2008 .

[8]  Jianlong Chen,et al.  A question on McCoy rings , 2007, Bulletin of the Australian Mathematical Society.

[9]  Jianlong Chen,et al.  On Strongly Clean Matrix and Triangular Matrix Rings , 2006 .

[10]  Pace P. Nielsen Semi-commutativity and the McCoy condition , 2006 .

[11]  A. Moussavi,et al.  Polynomial extensions of quasi-Baer rings , 2005 .

[12]  A. Moussavi,et al.  ON (α, δ)-SKEW ARMENDARIZ RINGS , 2005 .

[13]  Yang Lee,et al.  Extensions of reversible rings , 2003 .

[14]  G. Marks A taxonomy of 2-primal rings , 2003 .

[15]  T. Kwak,et al.  On Skew Armendariz Rings , 2003 .

[16]  T. Lam PRIMENESS , SEMIPRIMENESS AND PRIME RADICAL OF ORE EXTENSIONS , 2003 .

[17]  A. Tuganbaev Rings Close to Regular , 2002 .

[18]  Y. Hirano On annihilator ideals of a polynomial ring over a noncommutative ring , 2002 .

[19]  A. Smoktunowicz,et al.  ARMENDARIZ RINGS AND SEMICOMMUTATIVE RINGS , 2002 .

[20]  A. Tuganbaev Semidistributive Modules and Rings , 1998 .

[21]  D. D. Anderson,et al.  Armendariz rings and gaussian rings , 1998 .

[22]  J. Krempa Some examples of reduced rings , 1996 .

[23]  Faith Carl Annihilator ideals, associated primes and kasch-mccoy commutative rings , 1991 .

[24]  C. Ferran Zip rings and mal'cev domains , 1991 .

[25]  Jebrel M. Habeb A Note on Zero Commutative and Duo Rings , 1990 .

[26]  C. Faith Rings with zero intersection property on annihilators : zip rings. , 1989 .

[27]  J. Zelmanowitz The finite intersection property on annihilator right ideals , 1976 .

[28]  W. D. Blair,et al.  Rings whose faithful left ideals are cofaithful. , 1975 .

[29]  E. Armendariz A note on extensions of Baer and P. P. -rings , 1974, Journal of the Australian Mathematical Society.

[30]  H. Bell Near-rings in which each element is a power of itself , 1970, Bulletin of the Australian Mathematical Society.

[31]  Neal H. McCoy,et al.  Remarks on Divisors of Zero , 1942 .