Swept Source Optical Coherence Tomography: a Review

Purpose of ReviewIn this review, we shall attempt to explain the physics behind swept source-optical coherence tomography (SS-OCT), the advantages and disadvantages of SS-OCT when compared with spectral domain-optical coherence tomography (SD-OCT), and the current clinical applications of SS-OCT.Recent FindingsSS-OCT offers improvements in visualizing the vitreous, retina, choroid, and sclera. The increased scan speeds, decreased signal attenuation, and deeper tissue penetration make SS-OCT ideal for capturing wide fields of view and for studying structures below the RPE, especially the choroid.SummarySS-OCT is an exciting new technology offering enhanced visualization of ocular structures. However, its everyday clinical utility remains unclear.

[1]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[2]  Robert N. Weinreb,et al.  Anterior Lamina Cribrosa Insertion in Primary Open-Angle Glaucoma Patients and Healthy Subjects , 2014, PloS one.

[3]  Young Kook Kim,et al.  Assessment of Open-Angle Glaucoma Peripapillary and Macular Choroidal Thickness Using Swept-Source Optical Coherence Tomography (SS-OCT) , 2016, PloS one.

[4]  M. Akiba,et al.  Evaluation of congenital optic disc pits and optic disc colobomas by swept-source optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[5]  James G. Fujimoto,et al.  Characterization of Choroidal Layers in Normal Aging Eyes Using Enface Swept-Source Optical Coherence Tomography , 2015, PloS one.

[6]  T. Ishibashi,et al.  Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging , 2013, Eye.

[7]  J. Fujimoto,et al.  Ultrahigh-resolution ophthalmic optical coherence tomography , 2001, Nature Medicine.

[8]  Ruikang K. Wang,et al.  Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms , 2017, Investigative ophthalmology & visual science.

[9]  K. Freund,et al.  EN FACE IMAGING OF PACHYCHOROID SPECTRUM DISORDERS WITH SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY , 2016, Retina.

[10]  Sophie Kubach,et al.  Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization , 2017, Investigative ophthalmology & visual science.

[11]  Joachim Hornegger,et al.  En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. , 2014, American journal of ophthalmology.

[12]  Y. Mitamura,et al.  Swept-Source Optical Coherence Tomographic Findings of Choroidal Osteoma , 2014, Case Reports in Ophthalmology.

[13]  J. Caminal,et al.  Swept source optical coherence tomography imaging of a series of choroidal tumours. , 2015, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[14]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[15]  Robert J Zawadzki,et al.  Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography , 2013, Journal of biomedical optics.

[16]  Muka Moriyama,et al.  Characteristics of Peripapillary Staphylomas Associated With High Myopia Determined by Swept-Source Optical Coherence Tomography. , 2016, American journal of ophthalmology.

[17]  Eric M. Moult,et al.  SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY REVEALS CHORIOCAPILLARIS ALTERATIONS IN EYES WITH NASCENT GEOGRAPHIC ATROPHY AND DRUSEN-ASSOCIATED GEOGRAPHIC ATROPHY , 2016, Retina.

[18]  T. Ishibashi,et al.  Dynamics of Macular Hole Closure in Gas-Filled Eyes within 24 h of Surgery Observed with Swept Source Optical Coherence Tomography , 2014, Ophthalmic Research.

[19]  J. Schuman,et al.  Optical coherence tomography. , 2000, Science.

[20]  Eric M. Moult,et al.  En Face Doppler OCT Measurement of Total Retinal Blood Flow in Eyes with Diabetic Retinopathy and Diabetic Macular Edema , 2016 .

[21]  G. Cheung,et al.  Comparison of spectral domain and swept-source optical coherence tomography in pathological myopia , 2014, Eye.

[22]  M. Akiba,et al.  Observations of vascular structures within and posterior to sclera in eyes with pathologic myopia by swept-source optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[23]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.

[24]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[25]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[26]  J. Fujimoto,et al.  Optical coherence tomography: A new tool for glaucoma diagnosis , 1995, Current opinion in ophthalmology.

[27]  K. Maruyama,et al.  Clinical Factors Associated with Lamina Cribrosa Thickness in Patients with Glaucoma, as Measured with Swept Source Optical Coherence Tomography , 2016, PloS one.

[28]  Ruikang K. Wang,et al.  Original articleOptical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration , 2016 .

[29]  R. Spaide,et al.  EVALUATION OF PERIPAPILLARY INTRACHOROIDAL CAVITATION WITH SWEPT SOURCE AND ENHANCED DEPTH IMAGING OPTICAL COHERENCE TOMOGRAPHY , 2012, Retina.

[30]  U. Schmidt-Erfurth,et al.  Comparative study between a spectral domain and a high-speed single-beam swept source OCTA system for identifying choroidal neovascularization in AMD , 2016, Scientific Reports.

[31]  Wolfgang Drexler,et al.  Choroidal Haller's and Sattler's Layer Thickness Measurement Using 3-Dimensional 1060-nm Optical Coherence Tomography , 2014, PloS one.

[32]  A. Tsujikawa,et al.  Three-dimensional tomographic features of dome-shaped macula by swept-source optical coherence tomography. , 2013, American journal of ophthalmology.

[33]  Y. Ikuno,et al.  Morphologic characteristics of macular complications of a dome-shaped macula determined by swept-source optical coherence tomography. , 2014, American journal of ophthalmology.

[34]  Gadi Wollstein,et al.  Multidisciplinary Ophthalmic Imaging Cardiac-Gated En Face Doppler Measurement of Retinal Blood Flow Using Swept-Source Optical Coherence Tomography at 100 , 000 Axial Scans per Second , 2015 .

[35]  K. Maruyama,et al.  3D Evaluation of the Lamina Cribrosa with Swept-Source Optical Coherence Tomography in Normal Tension Glaucoma , 2015, PloS one.

[36]  R. Adelman,et al.  CHOROIDAL THICKNESS MEASURED WITH SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY BEFORE AND AFTER VITRECTOMY WITH INTERNAL LIMITING MEMBRANE PEELING FOR IDIOPATHIC EPIRETINAL MEMBRANES , 2015, Retina.

[37]  Joachim Hornegger,et al.  Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography. , 2016, American journal of ophthalmology-glaucoma.

[38]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[39]  Wolfgang Drexler,et al.  Choroid, Haller's, and Sattler's layer thickness in intermediate age-related macular degeneration with and without fellow neovascular eyes. , 2014, Investigative ophthalmology & visual science.

[40]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[41]  Theodore Leng,et al.  En Face Imaging of Epiretinal Membranes and the Retinal Nerve Fiber Layer Using Swept-Source Optical Coherence Tomography. , 2016, Ophthalmic surgery, lasers & imaging retina.

[42]  Martin F. Kraus,et al.  Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. , 2014, American journal of ophthalmology.

[43]  Eric M. Moult,et al.  Toward quantitative OCT angiography: visualizing flow impairment using variable interscan time analysis (VISTA) , 2016 .

[44]  S. Yun,et al.  High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength. , 2003, Optics express.

[45]  James G. Fujimoto,et al.  Enhanced Vitreous Imaging in Healthy Eyes Using Swept Source Optical Coherence Tomography , 2014, PloS one.

[46]  A. Kampik,et al.  Multi-MHz retinal OCT. , 2013, Biomedical optics express.

[47]  Eric M. Moult,et al.  Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. , 2015, Ophthalmology.

[48]  Martin F. Kraus,et al.  En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. , 2014, Ophthalmology.

[49]  Nadia K. Waheed,et al.  Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies , 2016, Progress in Retinal and Eye Research.

[50]  Jay S Duker,et al.  A review of optical coherence tomography angiography (OCTA) , 2015, International Journal of Retina and Vitreous.

[51]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[52]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[53]  K. Schaal,et al.  ASSOCIATION OF PREVASCULAR VITREOUS FISSURES AND CISTERNS WITH VITREOUS DEGENERATION AS ASSESSED BY SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY , 2015, Retina.

[54]  Boris Povazay,et al.  Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[55]  R. Spaide,et al.  Enhanced depth imaging spectral-domain optical coherence tomography. , 2008, American journal of ophthalmology.

[56]  F. Medeiros,et al.  Assessment of Optic Nerve Head Drusen Using Enhanced Depth Imaging and Swept Source Optical Coherence Tomography , 2014, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[57]  Hideo Akiyama,et al.  Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[58]  Y. Ikuno,et al.  Choroidal thickness in healthy Japanese subjects. , 2010, Investigative ophthalmology & visual science.

[59]  A. Ambrósio,et al.  Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema , 2017, Acta ophthalmologica.

[60]  Giovanni Gregori,et al.  Choroidal Thickness and Choroidal Vessel Density in Nonexudative Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Imaging , 2016, Investigative ophthalmology & visual science.

[61]  F. Medeiros,et al.  Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. , 2015, American journal of ophthalmology.

[62]  J. Fujimoto,et al.  Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser. , 1997, Optics letters.

[63]  Eric M. Moult,et al.  Visualizing the Choriocapillaris Under Drusen: Comparing 1050-nm Swept-Source Versus 840-nm Spectral-Domain Optical Coherence Tomography Angiography , 2016, Investigative ophthalmology & visual science.

[64]  J. Duker,et al.  COMPARISON OF SPECTRAL/FOURIER DOMAIN OPTICAL COHERENCE TOMOGRAPHY INSTRUMENTS FOR ASSESSMENT OF NORMAL MACULAR THICKNESS , 2010, Retina.

[65]  Richard F Spaide,et al.  Visualization of the posterior vitreous with dynamic focusing and windowed averaging swept source optical coherence tomography. , 2014, American journal of ophthalmology.

[66]  Guihua Xu,et al.  Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. , 2013, Ophthalmology.

[67]  Toco Y P Chui,et al.  Details of Glaucomatous Damage Are Better Seen on OCT En Face Images Than on OCT Retinal Nerve Fiber Layer Thickness Maps. , 2015, Investigative ophthalmology & visual science.

[68]  S. Farsiu,et al.  Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography , 2016, Scientific Reports.

[69]  S. Kishi,et al.  Posterior precortical vitreous pocket. , 1991, Archives of ophthalmology.