Ionic conductance of nanopores in microscale analysis systems: where microfluidics meets nanofluidics.

In this tutorial review we illustrate the origin and dependence on various system parameters of the ionic conductance that exists in discrete nanochannels as well as in nanoporous separation and preconcentration units contained as hybrid configurations, membranes, packed beds, or monoliths in microscale liquid phase analysis systems. A particular complexity arises as external electrical fields are superimposed on internal chemical and electrical potential gradients for tailoring molecular transport. It is demonstrated that the variety of geometries in which the microfluidic/nanofluidic interfaces are realized share common, fundamental features of coupled mass and charge transport, but that phenomena behind the key steps in a particular application can be significantly tuned, depending on the morphology of a material. Thus, the understanding of morphology-related transport in internal and external electrical potential gradients is critical to the performance of a device. This addresses a variety of geometries (slits, channels, filters, membranes, random or regular networks of pores, etc.) and applications, e. g., the gating, sensing, preconcentration, and separation in multifunctional miniaturized devices. Inherently coupled mass and charge transport through ion-permselective (charge-selective) microfluidic/nanofluidic interfaces is analyzed with a stepwise-added complexity and discussed with respect to the morphology of the charge-selective spatial domains. Within this scenario, the electrostatics and electrokinetics in microfluidic and nanofluidic channels, as well as the electrohydrodynamics evolving at microfluidic/nanofluidic interfaces, where microfluidics meets nanofluidics, define the platform of central phenomena.

[1]  Yoshinobu Tanaka,et al.  Concentration polarization in ion-exchange membrane electrodialysis , 1991 .

[2]  Rapp,et al.  Electroosmotic and pressure-driven flow in open and packed capillaries: velocity distributions and fluid dispersion , 2000, Analytical chemistry.

[3]  Torben Smith Sørensen,et al.  Surface chemistry and electrochemistry of membranes , 1999 .

[4]  Hsueh-Chia Chang,et al.  An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays , 2005, Analytical and bioanalytical chemistry.

[5]  Drona Kandhai,et al.  Coupled lattice‐Boltzmann and finite‐difference simulation of electroosmosis in microfluidic channels , 2004 .

[6]  C. Horváth,et al.  Capillary electrochromatography of peptides on a column packed with tentacular weak cation-exchanger particles. , 2002, Journal of chromatography. A.

[7]  J. Sweedler,et al.  Gateable nanofluidic interconnects for multilayered microfluidic separation systems. , 2003, Analytical chemistry.

[8]  K. S. Spiegler,et al.  Polarization at ion exchange membrane-solution interfaces , 1971 .

[9]  Nam-Trung Nguyen,et al.  Micromixers?a review , 2005 .

[10]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[11]  M. Taverna,et al.  Retention behaviour of peptides in capillary electrochromatography using an embedded ammonium in dodecacyl stationary phase. , 2004, Journal of chromatography. A.

[12]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[13]  P. Renaud,et al.  Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. , 2005, Nano letters.

[14]  A. Manz,et al.  Micro total analysis systems. Latest advancements and trends. , 2006, Analytical chemistry.

[15]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[16]  J. F. Osterle,et al.  Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.

[17]  M. Burns,et al.  Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. , 2006, Analytical chemistry.

[18]  A. Manz,et al.  Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights , 1993 .

[19]  A. Revil,et al.  Ionic Diffusivity, Electrical Conductivity, Membrane and Thermoelectric Potentials in Colloids and Granular Porous Media: A Unified Model. , 1999, Journal of colloid and interface science.

[20]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[21]  Tibor Chován,et al.  Microfabricated devices in biotechnology and biochemical processing. , 2002, Trends in biotechnology.

[22]  Alan P. Morrison,et al.  Transport of ions and biomolecules through single asymmetric nanopores in polymer films , 2005 .

[23]  Hsueh-Chia Chang,et al.  Microfluidic mixing by dc and ac nonlinear electrokinetic vortex flows , 2004 .

[24]  J. Michael Ramsey,et al.  Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices , 1994 .

[25]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Westerlund,et al.  Capillary electrochromatography of tricyclic antidepressants on strong cation exchangers with different pore sizes. , 2001, Journal of chromatography. A.

[27]  Mark J. Jackson,et al.  A review of micro and nanomachining from a materials perspective , 2005 .

[28]  U. Tallarek,et al.  Concentration polarization-based nonlinear electrokinetics in porous media: induced-charge electroosmosis. , 2005, The journal of physical chemistry. B.

[29]  T. Tsuda,et al.  Voltage‐induced variation of distribution coefficient in electrochromatography , 1999, Electrophoresis.

[30]  D. Woermann Comments on a study by Wolf, Siwy, Korchev and Spohr published in Cell. Mol. Biol. Lett. 4 (1999) 553-565. , 2001, Cellular & molecular biology letters.

[31]  P. Bohn,et al.  Manipulating Molecular Transport through Nanoporous Membranes by Control of Electrokinetic Flow: Effect of Surface Charge Density and Debye Length , 2001 .

[32]  P. Wong,et al.  Electrokinetics in micro devices for biotechnology applications , 2004, IEEE/ASME Transactions on Mechatronics.

[33]  Hsueh-Chia Chang,et al.  Nonlinear Smoluchowski slip velocity and micro-vortex generation , 2002, Journal of Fluid Mechanics.

[34]  I. Nischang,et al.  Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds. , 2006, Journal of chromatography. A.

[35]  A. Manz,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[36]  K. Masuch,et al.  Separation of basic solutes by reversed-phase capillary electrochromatography. , 2000, Journal of chromatography. A.

[37]  P. Glover,et al.  Theory of ionic-surface electrical conduction in porous media , 1997 .

[38]  V. Hessel,et al.  Passive micromixers for applications in the microreactor and μTAS fields , 2005 .

[39]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[40]  A. Manz,et al.  Lab-on-a-chip: microfluidics in drug discovery , 2006, Nature Reviews Drug Discovery.

[41]  M. Andersson,et al.  Peak compression effects in capillary electrochromatography. , 2004, Journal of chromatography. A.

[42]  R. MacKinnon Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). , 2004 .

[43]  R A Mathies,et al.  High-throughput genetic analysis using microfabricated 96-sample capillary array electrophoresis microplates. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  F. Regnier,et al.  Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. , 2002, Journal of chromatography. A.

[45]  Hua Xiao,et al.  Peptide separation in hydrophilic interaction capillary electrochromatography , 2003, Electrophoresis.

[46]  Arjan P Quist,et al.  Recent advances in microcontact printing , 2005, Analytical and bioanalytical chemistry.

[47]  M. Métayer,et al.  Concentration polarization on ion-exchange membranes in electrodialysis with natural convection: , 1973 .

[48]  J. Eijkel,et al.  Technologies for nanofluidic systems: top-down vs. bottom-up--a review. , 2005, Lab on a chip.

[49]  H. Stone,et al.  Microfluidics: Basic issues, applications, and challenges , 2001 .

[50]  A. Majumdar,et al.  Electrostatic control of ions and molecules in nanofluidic transistors. , 2005, Nano letters.

[51]  José A. Manzanares,et al.  Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes , 1993 .

[52]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[53]  Kazuki Nakanishi,et al.  Peer Reviewed: Monolithic LC Columns , 2001 .

[54]  M. Ladisch,et al.  Solute retention in electrochromatography by electrically induced sorption , 1993 .

[55]  Andreas Manz,et al.  High-Speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device , 1994 .

[56]  Monica Brivio,et al.  Miniaturized continuous flow reaction vessels: influence on chemical reactions. , 2006, Lab on a chip.

[57]  H. T. Soh,et al.  Integrated genetic analysis microsystems , 2004 .

[58]  Richard M Crooks,et al.  Electrokinetic trapping and concentration enrichment of DNA in a microfluidic channel. , 2003, Journal of the American Chemical Society.

[59]  M. Euerby,et al.  Assessment of silica‐based reversed‐phase materials for the analysis of a range of basic analytes by capillary electrochromatography , 2002 .

[60]  Ángel V. Delgado,et al.  Interfacial Electrokinetics and Electrophoresis , 2002 .

[61]  M. Bedair,et al.  Capillary electrochromatography with monolithic stationary phases. III. Evaluation of the electrochromatographic retention of neutral and charged solutes on cationic stearyl-acrylate monoliths and the separation of water-soluble proteins and membrane proteins. , 2003, Journal of chromatography. A.

[62]  Volker Hessel,et al.  Microchemical Engineering: Components, Plant Concepts, User Acceptance – Part II , 2003 .

[63]  Matthias Wessling,et al.  Role of membrane surface in concentration polarization at cation exchange membranes , 2004 .

[64]  K. A. Lebedev,et al.  Space charge effect on competitive ion transport through ion-exchange membranes , 2002 .

[65]  P. Stroeve,et al.  Protein transport through gold-coated, charged nanopores : Effects of applied voltage , 2006 .

[66]  D. Woermann Electrochemical transport properties of a cone-shaped nanopore: revisited , 2004 .

[67]  Z. Siwy,et al.  Asymmetric diffusion through synthetic nanopores. , 2005, Physical review letters.

[68]  J. Kasianowicz,et al.  Conductance and ion selectivity of a mesoscopic protein nanopore probed with cysteine scanning mutagenesis. , 2005, Biophysical journal.

[69]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[70]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[71]  B. Zaltzman,et al.  Experimental Verification of the Electroosmotic Mechanism of Overlimiting Conductance Through a Cation Exchange Electrodialysis Membrane , 2002 .

[72]  K. Jensen Microreaction engineering * is small better? , 2001 .

[73]  Charles R. Martin,et al.  Nanomaterials: A Membrane-Based Synthetic Approach , 1994, Science.

[74]  C. Dekker,et al.  Surface-charge-governed ion transport in nanofluidic channels. , 2004, Physical review letters.

[75]  Daniel T Chiu,et al.  Disposable microfluidic devices: fabrication, function, and application. , 2005, BioTechniques.

[76]  Richard M Crooks,et al.  Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug. , 2005, Lab on a chip.

[77]  Andre Marziali,et al.  Evaluation of nanopores as candidates for electronic analyte detection , 2002, Electrophoresis.

[78]  K. Kontturi,et al.  POLARIZATION EFFECTS AT THE CATION-EXCHANGE MEMBRANE-SOLUTION INTERFACE , 1991 .

[79]  P. Ramirez,et al.  Modeling of pH-Switchable Ion Transport and Selectivity in Nanopore Membranes with Fixed Charges , 2003 .

[80]  Robert S Foote,et al.  Preconcentration of proteins on microfluidic devices using porous silica membranes. , 2005, Analytical chemistry.

[81]  N. Mishchuk,et al.  Electroosmosis of the second kind , 1995 .

[82]  T. Shepodd,et al.  Microchip HPLC of peptides and proteins. , 2005, Analytical chemistry.

[83]  U. Tallarek,et al.  Chromatographic performance of monolithic and particulate stationary phases. Hydrodynamics and adsorption capacity. , 2003, Journal of chromatography. A.

[84]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[85]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[86]  Jae-Hwan Choi,et al.  Direct measurement of concentration distribution within the boundary layer of an ion-exchange membrane. , 2002, Journal of colloid and interface science.

[87]  Soga,et al.  Performance of a monolithic silica column in a capillary under pressure-driven and electrodriven conditions , 2000, Analytical chemistry.

[88]  M. Wyllie,et al.  Electrical potentials across porous plugs and membranes. Ion-exchange resin-solution systems , 1956 .

[89]  Mukul M. Sharma,et al.  An improved Space-Charge model for flow through charged microporous membranes , 1997 .

[90]  Ming Lei,et al.  Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. , 2004, Advanced drug delivery reviews.

[91]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Andreas Seidel-Morgenstern,et al.  Electrokinetic effects on the transport of charged analytes in biporous media with discrete ion-permselective regions. , 2005, Analytical chemistry.

[93]  Holger Löwe,et al.  Mikroverfahrenstechnik: Komponenten - Anlagenkonzeption - Anwenderakzeptanz: Teil 2 , 2002 .

[94]  K. Nakanishi,et al.  Structure Design of Double-Pore Silica and Its Application to HPLC , 1998 .

[95]  E. Verpoorte Microfluidic chips for clinical and forensic analysis , 2002, Electrophoresis.

[96]  A. Singh,et al.  Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. , 2006, Analytical chemistry.

[97]  D. Beebe,et al.  Controlled microfluidic interfaces , 2005, Nature.

[98]  A. Khademhosseini,et al.  Microscale technologies for tissue engineering and biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[99]  M. Ladisch,et al.  Mechanistic description and experimental studies of electrochromatography of proteins , 1995 .

[100]  C. Dekker,et al.  Translocation of double-strand DNA through a silicon oxide nanopore. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  Zaltzman,et al.  Electro-osmotically induced convection at a permselective membrane , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[102]  J. Eijkel,et al.  Nanofluidics: what is it and what can we expect from it? , 2005 .

[103]  Sen Unified model of conductivity and membrane potential of porous media. , 1989, Physical review. B, Condensed matter.

[104]  C. Martin,et al.  pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. , 2001, Analytical chemistry.

[105]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[106]  R. E. Hicks,et al.  Concertration Polarization on Ion Exchange Resin Membranes in Electrodialytic Demineralization , 1965 .

[107]  Ivo Nischang,et al.  Perspective on concentration polarization effects in electrochromatographic separations , 2005, Electrophoresis.

[108]  P. Stroeve,et al.  Protein diffusion in charged nanotubes: "on-off"' behavior of molecular transport. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[109]  H. Yin,et al.  Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip. , 2005, Analytical chemistry.

[110]  Angel Ríos,et al.  Challenges of analytical microsystems , 2006 .

[111]  Javier Cervera,et al.  Ionic conduction, rectification, and selectivity in single conical nanopores. , 2006, The Journal of chemical physics.

[112]  J. C. Fair,et al.  Reverse Electrodialysis in Charged Capillary Membranes , 1971 .

[113]  C. Horváth,et al.  Fundamentals of capillary electrochromatography: migration behavior of ionized sample components. , 2002, Analytical chemistry.

[114]  M. Bedair,et al.  Capillary electrochromatography with monolithic stationary phases: 1. Preparation of sulfonated stearyl acrylate monoliths and their electrochromatographic characterization with neutral and charged solutes , 2002, Electrophoresis.

[115]  A. Rathore,et al.  Migration behavior of weakly retained, charged analytes in voltage-assisted micro-high performance liquid chromatography. , 2005, Journal of chromatography. A.

[116]  Man Wong,et al.  Surface-chemistry technology for microfluidics , 2003 .

[117]  M. Ladisch,et al.  Electrochromatographic separation of proteins. , 1995, Journal of chromatography. A.

[118]  S. Kandlikar,et al.  Review of fabrication of nanochannels for single phase liquid flow , 2006 .

[119]  J. Rocca,et al.  Potential Use of an Aminopropyl Stationary Phase in Hydrophilic Interaction Capillary Electrochromatography. Application to Tetracycline Antibiotics , 2005 .

[120]  Martin Pumera,et al.  Microchip-based electrochromatography: designs and applications. , 2005, Talanta.

[121]  A. Rathore,et al.  Interplay of chromatographic and electrophoretic processes in capillary electrochromatography. , 2003, Journal of Chromatography A.

[122]  C. H. Hamann,et al.  Characteristics of Ion-Exchange Membranes for Electrodialysis on the Basis of Irreversible Thermodynamics , 1990 .

[123]  N. F. de Rooij,et al.  Microfluidics meets MEMS , 2003, Proc. IEEE.

[124]  J. Sweedler,et al.  Nanocapillary arrays effect mixing and reaction in multilayer fluidic structures. , 2004, Angewandte Chemie.

[125]  I. Rubinstein Theory of concentration polarization effects in electrodialysis on counter-ion selectivity of ion-exchange membranes with differing counter-ion distribution coefficients , 1990 .

[126]  A. L. Stevens,et al.  Million-fold preconcentration of proteins and peptides by nanofluidic filter. , 2005, Analytical chemistry.

[127]  Lydia L. Sohn,et al.  An Artificial Nanopore for Molecular Sensing , 2003 .

[128]  T. Tsuda,et al.  Voltage-Induced Sample Release from Anion Exchange Supports in Capillary Electrochromatography. , 1998 .

[129]  Simon Song,et al.  Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. , 2004, Analytical chemistry.

[130]  C. R. Martin,et al.  Investigations of the Transport Properties of Gold Nanotubule Membranes , 2001 .

[131]  K. Bartle,et al.  Applications of capillary electrochromatography in pharmaceutical analysis , 1997 .

[132]  C. Larchet,et al.  Ion transfer across ion-exchange membranes with homogeneous and heterogeneous surfaces. , 2005, Journal of colloid and interface science.

[133]  Yu Xiang,et al.  A magneto-hydrodynamically controlled fluidic network , 2003 .

[134]  G. Saracco Transport properties of monovalent-ion-permselective membranes , 1997 .

[135]  Yu-Chong Tai,et al.  Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. , 2005, Analytical chemistry.

[136]  J. T. Wu,et al.  Protein digest analysis by pressurized capillary electrochromatography using an ion trap storage/reflectron time-of-flight mass detector. , 1997, Analytical chemistry.

[137]  R. MacKinnon,et al.  Principles of Selective Ion Transport in Channels and Pumps , 2005, Science.

[138]  Aa Anton Darhuber,et al.  PRINCIPLES OF MICROFLUIDIC ACTUATION BY MODULATION OF SURFACE STRESSES , 2005 .

[139]  S. K. Griffiths,et al.  Hydrodynamic Dispersion of a Neutral Nonreacting Solute in Electroosmotic Flow , 1999 .

[140]  S. Dukhin,et al.  Electrokinetic phenomena of the second kind and their applications , 1991 .

[141]  Elisabeth Verpoorte,et al.  Beads and chips: new recipes for analysis. , 2003, Lab on a chip.

[142]  G. Whitesides,et al.  Controlling flows in microchannels with patterned surface charge and topography. , 2003, Accounts of chemical research.

[143]  Hsueh-Chia Chang,et al.  Nonlinear electrokinetics and "superfast" electrophoresis. , 2004, Journal of colloid and interface science.

[144]  P. Renaud,et al.  Effect of the surface charge on ion transport through nanoslits , 2005 .

[145]  F. A. Morrison,et al.  Electrokinetic Energy Conversion in Ultrafine Capillaries , 1965 .

[146]  Dongqing Li Electrokinetics in Microfluidics , 2004 .

[147]  J. Leibovitz,et al.  Polarization at ion-exchange membranes in electrodialysis , 1972 .

[148]  I. Lazar,et al.  Microfabricated devices: A new sample introduction approach to mass spectrometry. , 2006, Mass spectrometry reviews.

[149]  M. Ye,et al.  Separation of acidic compounds by strong anion-exchange capillary electrochromatography. , 2000, Journal of chromatography. A.

[150]  Dimitrios Peroulis,et al.  DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor , 2006, Biomedical microdevices.

[151]  K. Otsuka,et al.  Modeling of retention behavior in capillary electrochromatography from chromatographic and electrophoretic data. , 2002, Journal of chromatography. A.

[152]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[153]  J Michael Ramsey,et al.  Sample filtration, concentration, and separation integrated on microfluidic devices. , 2003, Analytical chemistry.

[154]  G. Whitesides,et al.  Flexible Methods for Microfluidics , 2001 .

[155]  J. Greef,et al.  Automated capillary electrochromatography tandem mass spectrometry using mixed mode reversed‐phase ion‐exchange chromatography columns , 1999 .

[156]  Peidong Yang,et al.  Inorganic nanotubes: a novel platform for nanofluidics. , 2006, Accounts of chemical research.

[157]  R. Varoqui,et al.  Concentration polarization in electrodialysis with cation exchange membranes , 1981 .

[158]  Ulrich Tallarek,et al.  Nonequilibrium electrokinetic effects in beds of ion-permselective particles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[159]  Chuen Ho,et al.  Electrolytic transport through a synthetic nanometer-diameter pore. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[160]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[161]  P. Paul,et al.  Imaging of Pressure- and Electrokinetically Driven Flows through Open Capillaries. , 1998, Analytical chemistry.

[162]  Pieter Stroeve,et al.  Protein Transport in Nanoporous Membranes Modified with Self-Assembled Monolayers of Functionalized Thiols , 2002 .

[163]  Chong H. Ahn,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering a Review of Microvalves , 2022 .

[164]  C. L. Rice,et al.  Electrokinetic Flow in a Narrow Cylindrical Capillary , 1965 .

[165]  Qingling Li,et al.  Turbulent light scattering fluctuation spectra near a cation electrodialysis membrane , 1983 .

[166]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[167]  Mehmet Toner,et al.  Blood-on-a-chip. , 2005, Annual review of biomedical engineering.

[168]  Yi Li,et al.  Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips. , 2006, Analytical chemistry.