Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries.

Sub-nanometre sized metal clusters, with dimensions between metal atoms and nanoparticles, have attracted more and more attention due to their unique electronic structures and the subsequent unusual physical and chemical properties. However, the tiny size of the metal clusters brings the difficulty of their synthesis compared to the easier preparation of large nanoparticles. Up to now various synthetic techniques and routes have been successfully applied to the preparation of sub-nanometre clusters. Among the metals, gold clusters, especially the alkanethiolate monolayer protected clusters (MPCs), have been extensively investigated during the past decades. In recent years, silver and copper nanoclusters have also attracted enormous interest mainly due to their excellent photoluminescent properties. Meanwhile, more structural characteristics, particular optical, catalytic, electronic and magnetic properties and the related technical applications of the metal nanoclusters have been discovered in recent years. In this critical review, recent advances in sub-nanometre sized metal clusters (Au, Ag, Cu, etc.) including the synthetic techniques, structural characterizations, novel physical, chemical and optical properties and their potential applications are discussed in detail. We finally give a brief outlook on the future development of metal nanoclusters from the viewpoint of controlled synthesis and their potential applications.

[1]  Henri Patin,et al.  Reduced transition metal colloids: a novel family of reusable catalysts? , 2002, Chemical reviews.

[2]  Robin H. A. Ras,et al.  Fluorescent silver nanoclusters. , 2011, Nanoscale.

[3]  H. Schnöckel Structures and properties of metalloid Al and Ga clusters open our eyes to the diversity and complexity of fundamental chemical and physical processes during formation and dissolution of metals. , 2010, Chemical reviews.

[4]  R. Murray,et al.  HPLC of monolayer-protected gold nanoclusters. , 2003, Analytical chemistry.

[5]  J. Rivas,et al.  One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters. , 2010, Nano letters.

[6]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[7]  Zhongfan Liu,et al.  Approaching the electromagnetic mechanism of surface-enhanced Raman scattering: from self-assembled arrays to individual gold nanoparticles. , 2011, Chemical Society reviews.

[8]  Y. Tong,et al.  Identification of a source of size polydispersity and its solution in Brust-Schiffrin metal nanoparticle synthesis. , 2011, Chemical communications.

[9]  Shanhu Liu,et al.  Highly fluorescent Ag nanoclusters: microwave-assisted green synthesis and Cr3+ sensing. , 2011, Chemical communications.

[10]  D. Pletcher,et al.  A combinatorial approach to the study of particle size effects on supported electrocatalysts: oxygen reduction on gold. , 2006, Journal of combinatorial chemistry.

[11]  M. G. Warner,et al.  Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions , 2002 .

[12]  James W. White,et al.  Synthesis and X-ray structural characterization of the centred icosahedral gold cluster compound [Aul3(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction , 1981 .

[13]  Shaowei Chen Nanoparticle Assemblies: "Rectified" Quantized Charging in Aqueous Media , 2000 .

[14]  W. P. Bosman,et al.  Intermediates in the formation of gold clusters. Preparation and x-ray analysis of [Au7(PPh3)7]+ and synthesis and characterization of [Au8(PPh3)6I]PF6 , 1984 .

[15]  T. G. Schaaff Laser desorption and matrix-assisted laser desorption/ionization mass spectrometry of 29-kDa Au:SR cluster compounds. , 2004, Analytical chemistry.

[16]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[17]  Robin H. A. Ras,et al.  Color tunability and electrochemiluminescence of silver nanoclusters. , 2009, Angewandte Chemie.

[18]  K. Suslick,et al.  Sonochemical synthesis of highly fluorescent ag nanoclusters. , 2010, ACS nano.

[19]  Jong Hwa Jung,et al.  Functionalized magnetic nanoparticles as chemosensors and adsorbents for toxic metal ions in environmental and biological fields. , 2011, Chemical Society reviews.

[20]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[21]  Shaowei Chen,et al.  Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. , 2002, Journal of the American Chemical Society.

[22]  Eugenia Kumacheva,et al.  Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels , 2005 .

[23]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[24]  R. Murray,et al.  Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters , 2001 .

[25]  H. Kawasaki,et al.  Surfactant-free synthesis of palladium nanoclusters for their use in catalytic cross-coupling reactions. , 2011, Chemical communications.

[26]  Shigeru Sato,et al.  Dynamic final-state effect on the Au 4f core-level photoemission of dodecanethiolate-passivated Au nanoparticles on graphite substrates , 2003 .

[27]  S. Reed,et al.  Improved Synthesis of Small (dCORE ≈ 1.5 nm) Phosphine-Stabilized Gold Nanoparticles , 2000 .

[28]  R. Dickson,et al.  High quantum yield blue emission from water-soluble Au8 nanodots. , 2003, Journal of the American Chemical Society.

[29]  W. E. Parker,et al.  Tetrahalo Complexes of Dipositive Metals in the First Transition Series , 2007 .

[30]  T. Yokoyama,et al.  X-ray magnetic circular dichroism of size-selected, thiolated gold clusters. , 2006, Journal of the American Chemical Society.

[31]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[32]  Emily V. Carino,et al.  Dendrimer-encapsulated nanoparticles: New synthetic and characterization methods and catalytic applications , 2011 .

[33]  P. Liljeroth,et al.  Quantised charging of monolayer-protected nanoparticles. , 2008, Chemical Society reviews.

[34]  J. Rivas,et al.  Electrochemical Synthesis of Very Stable Photoluminescent Copper Clusters , 2010 .

[35]  D. Schiffrin,et al.  Purification of dodecanethiol derivatised gold nanoparticles. , 2003, Chemical communications.

[36]  J. Gerbec,et al.  Microwave-enhanced reaction rates for nanoparticle synthesis. , 2005, Journal of the American Chemical Society.

[37]  Rongchao Jin,et al.  Correlating second harmonic optical responses of single Ag nanoparticles with morphology. , 2005, Journal of the American Chemical Society.

[38]  W. Chang,et al.  Fluorescent gold nanoclusters as a biocompatible marker for in vitro and in vivo tracking of endothelial cells. , 2011, ACS nano.

[39]  Y. Hsiao,et al.  Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. , 2011, Angewandte Chemie.

[40]  R. Murray,et al.  28 KDA ALKANETHIOLATE-PROTECTED AU CLUSTERS GIVE ANALOGOUS SOLUTION ELECTROCHEMISTRY AND STM COULOMB STAIRCASES , 1997 .

[41]  T. Pradeep,et al.  First Principles Studies of Two Luminescent Molecular Quantum Clusters of Silver, Ag7(H2MSA)7 and Ag8(H2MSA)8, Based on Experimental Fluorescence Spectra , 2011 .

[42]  Robert M Dickson,et al.  Highly fluorescent noble-metal quantum dots. , 2007, Annual review of physical chemistry.

[43]  Claire M. Cobley,et al.  Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. , 2011, Chemical reviews.

[44]  J. Reilly,et al.  High-Resolution Time-of-Flight Mass Spectra of Alkanethiolate-Coated Gold Nanocrystals , 1998 .

[45]  R. Murray,et al.  Temperature-dependent quantized double layer charging of monolayer-protected gold clusters. , 2003, Analytical chemistry.

[46]  Xiaobo Shi,et al.  Cluster of clusters: a modular approach to large metal clusters. Structural characterization of a 38-atom cluster [(p-Tol3P)12Au18Ag20Cl14] based on vertex-sharing triicosahedra , 1990 .

[47]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[48]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[49]  Fengjun Deng,et al.  Rectifying nanoscale electron transfer by viologen moieties and hydrophobic electrolyte ions , 2002 .

[50]  Xiaobo Shi,et al.  Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage , 1992 .

[51]  Tom Vosch,et al.  Oligonucleotide-stabilized Ag nanocluster fluorophores. , 2008, Journal of the American Chemical Society.

[52]  Y. Negishi,et al.  Size Determination of Gold Clusters by Polyacrylamide Gel Electrophoresis in a Large Cluster Region , 2009 .

[53]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[54]  Yukatsu Shichibu,et al.  HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to "magic-number" Au13 clusters. , 2010, Small.

[55]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[56]  Elizabeth M. Nolan,et al.  Tools and tactics for the optical detection of mercuric ion. , 2008, Chemical reviews.

[57]  Yadong Li,et al.  Ag, Ag2S, and Ag2Se nanocrystals: synthesis, assembly, and construction of mesoporous structures. , 2008, Journal of the American Chemical Society.

[58]  Shaojun Dong,et al.  Silver nanocluster-based fluorescent sensors for sensitive detection of Cu(II) , 2008 .

[59]  S. Nie,et al.  Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: a new route to fluorescent and water-soluble atomic clusters. , 2007, Journal of the American Chemical Society.

[60]  Shaowei Chen,et al.  Self-assembled multilayers of gold nanoparticles: nitrate-induced rectification of quantized capacitance charging and effects of alkaline (earth) ions in aqueous solutions. , 2005, Physical chemistry chemical physics : PCCP.

[61]  Zhong-Qun Tian,et al.  Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. , 2008, Journal of the American Chemical Society.

[62]  S. Pal,et al.  Quantum Clusters of Gold Exhibiting FRET , 2008 .

[63]  Y. Tong,et al.  Spectroscopic evidence of a bidentate-binding of meso-2,3-dimercaptosuccinic acid on silver nanoclusters , 2011 .

[64]  James E. Hutchison,et al.  Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters , 1995 .

[65]  R. Caudano,et al.  Electron spectroscopic characterization of oxygen adsorption on gold surfaces: II. Production of gold oxide in oxygen DC reactive sputtering , 1984 .

[66]  D. Mingos Molecular-orbital calculations on cluster compounds of gold , 1976 .

[67]  Christine D. Keating,et al.  Self-assembly of single electron transistors and related devices , 1998 .

[68]  R. Murray,et al.  Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)(18-x)(L)(x). , 2008, Journal of the American Chemical Society.

[69]  Rafael Luque,et al.  Supported metal nanoparticles on porous materials. Methods and applications. , 2009, Chemical Society reviews.

[70]  Qiang Wang,et al.  High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. , 2010, Angewandte Chemie.

[71]  R. Jin,et al.  Thermally-induced formation of atomic Au clusters and conversion into nanocubes. , 2004, Journal of the American Chemical Society.

[72]  F. Deng,et al.  Single‐Electron Transfer in Nanoparticle Solids , 2006 .

[73]  Joseph F. Parker,et al.  Electrospray ionization mass spectrometry of uniform and mixed monolayer nanoparticles: Au25[S(CH2)2Ph]18 and Au25[S(CH2)2Ph]18-x(SR)x. , 2007, Journal of the American Chemical Society.

[74]  Zhongfang Chen,et al.  Catalytic activities of subnanometer gold clusters (Au₁₆-Au₁₈, Au₂₀, and Au₂₇-Au₃₅) for CO oxidation. , 2011, ACS nano.

[75]  Y. Iwasaki,et al.  Surfactant-free solution synthesis of fluorescent platinum subnanoclusters. , 2010, Chemical communications.

[76]  Matthew Neurock,et al.  Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst , 2011, Science.

[77]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[78]  Hongzheng Chen,et al.  Blending of HAuCl4 and histidine in aqueous solution: a simple approach to the Au10 cluster. , 2011, Nanoscale.

[79]  Jianping Xie,et al.  Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. , 2010, Chemical communications.

[80]  J. Bokhoven,et al.  d Electron density and reactivity of the d band as a function of particle size in supported gold catalysts , 2007 .

[81]  D. Bushnell,et al.  Synthesis and characterization of Au102(p-MBA)44 nanoparticles. , 2011, Journal of the American Chemical Society.

[82]  Wei Chen,et al.  One-pot synthesis of heterostructured Pt-Ru nanocrystals for catalytic formic acid oxidation. , 2011, Chemical communications.

[83]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[84]  C. Fischer,et al.  Characterization of colloidal gold nanoparticles according to size by capillary zone electrophoresis , 1997 .

[85]  G. Nienhaus,et al.  Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. , 2011, Nanoscale.

[86]  Robert L. Whetten,et al.  Isolation of Smaller Nanocrystal Au Molecules: Robust Quantum Effects in Optical Spectra , 1997 .

[87]  W. Tseng,et al.  Ultrasensitive sensing of Hg(2+) and CH(3)Hg(+) based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. , 2010, Analytical chemistry.

[88]  R. Murray,et al.  Gold nanoparticles with perfluorothiolate ligands. , 2008, Langmuir.

[89]  K. Kontturi,et al.  Electrochemical reduction of oxygen on nanostructured gold electrodes , 2008 .

[90]  P. L. Xavier,et al.  Understanding the evolution of luminescent gold quantum clusters in protein templates. , 2011, ACS nano.

[91]  Robert M Dickson,et al.  DNA-templated Ag nanocluster formation. , 2004, Journal of the American Chemical Society.

[92]  A. Henglein,et al.  Time-Resolved Investigation of Early Processes in the Reduction of Ag+ on Polyacrylate in Aqueous Solution , 1998 .

[93]  D. Ly,et al.  High yield, large scale synthesis of thiolate-protected Ag7 clusters. , 2009, Journal of the American Chemical Society.

[94]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[95]  R. Dickson,et al.  In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. , 2007, Angewandte Chemie.

[96]  B. Teo,et al.  Cluster of Clusters: Structure of the 37‐Atom Cluster [(p‐Tol3P)12Au18Ag19Br11]2⊕ and a Novel Series of Supraclusters Based on Vertex‐Sharing Icosahedra , 1987 .

[97]  Shaowei Chen Discrete charge transfer in nanoparticle solid films , 2007 .

[98]  J. Ahmed,et al.  Microemulsion route to the synthesis of nanoparticles , 2008 .

[99]  R. Caudano,et al.  Electron spectroscopic characterization of oxygen adsorption on gold surfaces: I. Substrate impurity effects on molecular oxygen adsorption in ultra high vacuum☆ , 1984 .

[100]  R. Murray,et al.  Gold nanoparticles: past, present, and future. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[101]  Xiaobo Shi,et al.  Cluster of clusters. Structure of a novel gold-silver cluster [(Ph3P)10Au13Ag12Br8](SbF6) containing an exact staggered-eclipsed-staggered metal configuration. Evidence of icosahedral units as building blocks , 1991 .

[102]  Hongfei Lin,et al.  Size-Dependent Activity of Gold Nanoparticles for Oxygen Electroreduction in Alkaline Electrolyte , 2008 .

[103]  R. Murray,et al.  Redox and fluorophore functionalization of water-soluble, Tiopronin- protected gold clusters , 1999 .

[104]  Wei Chen,et al.  Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. , 2009, Angewandte Chemie.

[105]  M. Manassero,et al.  Synthesis and structural characterization of bimetallic iron-platinum carbonyl clusters: their relationship with bimetallic iron-palladium carbonyl clusters , 1980 .

[106]  O. Lopez-Acevedo,et al.  Chirality and electronic structure of the thiolate-protected Au38 nanocluster. , 2010, Journal of the American Chemical Society.

[107]  J. L. Whitten,et al.  Theoretical studies of the chemisorption of hydrogen on copper , 1982 .

[108]  F. Cotton,et al.  A Molecular Orbital Treatment of the Bonding in Certain Metal Atom Clusters , 1964 .

[109]  Y. Negishi,et al.  One-pot preparation of subnanometer-sized gold clusters via reduction and stabilization by meso-2,3-dimercaptosuccinic acid. , 2003, Journal of the American Chemical Society.

[110]  N. Coombs,et al.  Chiral thiol-stabilized silver nanoclusters with well-resolved optical transitions synthesized by a facile etching procedure in aqueous solutions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[111]  R. Murray,et al.  Ligand heterogeneity on monolayer-protected gold clusters. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[112]  B. Krebs,et al.  Transition‐Metal Thiolates: From Molecular Fragments of Sulfidic Solids to Models for Active Centers in Biomolecules , 1991 .

[113]  F. Raymo,et al.  Chromogenic oxazines for cyanide detection. , 2006, The Journal of organic chemistry.

[114]  D. Vlachos,et al.  A Combined DFT and Statistical Mechanics Study for the CO Oxidation on the Au10–1 Cluster , 2011 .

[115]  H. Abruña,et al.  Composition Effects of Fept Alloy Nanoparticles on the Electro-oxidation of Formic Acid Table 1. Average Core Size, Size Distribution, and Composition of the Fexpt100-x Nanoparticles , 2022 .

[116]  X. Gong,et al.  Structures of [Ag7(SR)4]- and [Ag7(DMSA)4]-. , 2010, Journal of the American Chemical Society.

[117]  A. Wee,et al.  Three-Dimensional Self-Assembled Monolayer (3D SAM) of n-Alkanethiols on Copper Nanoclusters , 2004 .

[118]  D. Ghosh,et al.  Carbene-functionalized ruthenium nanoparticles , 2006 .

[119]  E. Liu,et al.  Non-enzymatic glucose detection using nitrogen-doped diamond-like carbon electrodes modified with gold nanoclusters , 2010 .

[120]  J. J. Steggerda,et al.  Separation of cationic metal cluster compounds by reversed phase HPLC , 1988 .

[121]  C. R. Strauss,et al.  Toward rapid, "green", predictable microwave-assisted synthesis. , 2005, Accounts of chemical research.

[122]  Xiaobo Shi,et al.  Molecular architecture of a novel vertex-sharing biicosahedral cluster [(p-Tol3P)10Au13Ag12Br8](PF6) containing a staggered-staggered-staggered configuration for the 25-atom metal framework , 1990 .

[123]  A. Henglein,et al.  Long-lived nonmetallic silver clusters in aqueous solution: preparation and photolysis , 1990 .

[124]  Jess P. Wilcoxon,et al.  Photoluminescence from nanosize gold clusters , 1998 .

[125]  Moon J. Kim,et al.  Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. , 2011, Journal of the American Chemical Society.

[126]  Lingyan Wang,et al.  Synthesis of size-controlled and shaped copper nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[127]  E. Wang,et al.  Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. , 2009, Chemical communications.

[128]  A. Henglein,et al.  Long-lived nonmetallic silver clusters in aqueous solution : a pulse radiolysis study of their formation , 1990 .

[129]  R. Finke,et al.  POLYOXOANION- AND TETRABUTYLAMMONIUM-STABILIZED RH(0)N NANOCLUSTERS : UNPRECEDENTED NANOCLUSTER CATALYTIC LIFETIME IN SOLUTION , 1999 .

[130]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[131]  Stephan Link,et al.  Optical properties and ultrafast dynamics of metallic nanocrystals. , 2003, Annual review of physical chemistry.

[132]  Shaowei Chen 4-Hydroxythiophenol-Protected Gold Nanoclusters in Aqueous Media , 1999 .

[133]  Kimihisa Yamamoto,et al.  Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. , 2009, Nature chemistry.

[134]  D. Pletcher,et al.  CO Oxidation on Gold in Acidic Environments: Particle Size and Substrate Effects , 2007 .

[135]  Katsuyuki Nobusada,et al.  Glutathione-protected gold clusters revisited: bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. , 2005, Journal of the American Chemical Society.

[136]  R. Finke,et al.  A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis , 1999 .

[137]  G. Schmid The relevance of shape and size of Au55 clusters. , 2008, Chemical Society reviews.

[138]  A. Banerjee,et al.  Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgII Sensing , 2010 .

[139]  Mohan Srinivasarao,et al.  Shape separation of gold nanorods using centrifugation , 2005, Proceedings of the National Academy of Sciences.

[140]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[141]  D. Pletcher,et al.  Enhanced activity for electrocatalytic oxidation of carbon monoxide on titania-supported gold nanoparticles. , 2007, Angewandte Chemie.

[142]  K. Uosaki,et al.  Electrocatalytic reduction of oxygen to water at Au nanoclusters vacuum-evaporated on boron-doped diamond in acidic solution , 2004 .

[143]  Robert M Dickson,et al.  Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. , 2002, Journal of the American Chemical Society.

[144]  Richard M. Crooks,et al.  Preparation of Cu Nanoclusters within Dendrimer Templates , 1998 .

[145]  M. Mavrikakis,et al.  Adsorption and Dissociation of O2 on Gold Surfaces: Effect of Steps and Strain , 2003 .

[146]  W. Sachtler,et al.  Neopentane Conversion Catalyzed by Pd in L-Zeolite: Effects of Protons, Ions, and Zeolite Structure , 1993 .

[147]  Hui Zhang,et al.  Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. , 2012, Chemical communications.

[148]  R. Gil,et al.  Chirality in gold nanoclusters probed by NMR spectroscopy. , 2011, ACS nano.

[149]  G. Nienhaus,et al.  Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications , 2011 .

[150]  S. Dong,et al.  Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. , 2008, Chemical communications.

[151]  Kui Huang,et al.  Alkanethiolate-Protected Palladium Nanoparticles , 2000 .

[152]  R. Murray,et al.  Simulations of quantized double layer charging voltammetry of poly-disperse and mono-disperse monolayer-protected clusters , 2003 .

[153]  Dong,et al.  Preparation of Cu Nanoparticles from Water-in-Oil Microemulsions. , 1999, Journal of colloid and interface science.

[154]  R. V. Omkumar,et al.  Bright, NIR-emitting Au23 from Au25: characterization and applications including biolabeling. , 2009, Chemistry.

[155]  R. P. Andres,et al.  Coulomb Staircase at Room Temperature in a Self-Assembled Molecular Nanostructure , 1996, Science.

[156]  A. Sironi,et al.  Analogs of metallic lattices in rhodium carbonyl cluster chemistry. Synthesis and x-ray structure of the [Rh15(.mu.-CO)14(CO)13]3- and [Rh14(.mu.-CO)16(CO)9]4- anions showing a stepwise hexagonal close-packed/body-centered cubic interconversion , 1978 .

[157]  J. F. Corrigan,et al.  Metal Chalcogenide Clusters on the Border between Molecules and Materials , 2009 .

[158]  J. Pettibone,et al.  Synthetic Approach for Tunable, Size-Selective Formation of Monodisperse, Diphosphine-Protected Gold Nanoclusters , 2010 .

[159]  P. Frey,et al.  Synthesis of undecagold cluster molecules as biochemical labeling reagents. 1. Monoacyl and mono[N-(succinimidooxy)succinyl] undecagold clusters. , 1984, Biochemistry.

[160]  M. Cortie,et al.  Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. , 2011, Chemical reviews.

[161]  José Rivas,et al.  Synthesis of small atomic copper clusters in microemulsions. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[162]  Brian F. G. Johnson,et al.  Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters , 2008, Nature.

[163]  Royce W Murray,et al.  Quantized double-layer charging of highly monodisperse metal nanoparticles. , 2002, Journal of the American Chemical Society.

[164]  R. Dickson,et al.  Photoactivated fluorescence from individual silver nanoclusters. , 2001, Science.

[165]  D. Safer,et al.  Undecagold clusters for site-specific labeling of biological macromolecules: simplified preparation and model applications. , 1986, Journal of inorganic biochemistry.

[166]  P. Ray Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. , 2010, Chemical reviews.

[167]  K. Suslick,et al.  Water‐Soluble Fluorescent Silver Nanoclusters , 2010, Advanced materials.

[168]  T. Bigioni,et al.  Glutathione-stabilized magic-number silver cluster compounds. , 2010, Journal of the American Chemical Society.

[169]  Shigang Sun,et al.  Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. , 2010, Journal of the American Chemical Society.

[170]  Ryan J. White,et al.  Hexanethiolate monolayer protected 38 gold atom cluster. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[171]  R. Pei,et al.  Ion-induced rectification of nanoparticle quantized capacitance charging in aqueous solutions. , 2001, Journal of the American Chemical Society.

[172]  R. Gil,et al.  Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. , 2009, Journal of the American Chemical Society.

[173]  W. Schreiner,et al.  Dodecanethiol-Stabilized Platinum Nanoparticles Obtained by a Two-Phase Method: Synthesis, Characterization, Mechanism of Formation, and Electrocatalytic Properties , 2010 .

[174]  R. Jin,et al.  Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. , 2011, Journal of the American Chemical Society.

[175]  I. Capek,et al.  Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. , 2004, Advances in colloid and interface science.

[176]  A. Bard,et al.  Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. , 2004, Journal of the American Chemical Society.

[177]  Shaowei Chen,et al.  Lateral quantized charge transfer across nanoparticle monolayers at the air/water interface. , 2004, Journal of the American Chemical Society.

[178]  D. Ghosh,et al.  Alkyne-Protected Ruthenium Nanoparticles† , 2010 .

[179]  H. Frey,et al.  Water‐Soluble Fluorescent Ag Nanoclusters Obtained from Multiarm Star Poly(acrylic acid) as “Molecular Hydrogel” Templates , 2007 .

[180]  A. Frenkel,et al.  Shape-dependent catalytic properties of Pt nanoparticles. , 2010, Journal of the American Chemical Society.

[181]  T. Pradeep,et al.  Luminescent Ag7 and Ag8 clusters by interfacial synthesis. , 2010, Angewandte Chemie.

[182]  T. Kumazawa,et al.  Determination of cyanide in whole blood by capillary gas chromatography with cryogenic oven trapping. , 1998, Analytical chemistry.

[183]  F. Cotton,et al.  The Crystal Structure of Cesium Dodecachlorotrirhenate-(III), a Compound with a New Type of Metal Atom Cluster , 1963 .

[184]  Cheng-Kang Chiang,et al.  Nanoparticle-based mass spectrometry for the analysis of biomolecules. , 2011, Chemical Society reviews.

[185]  J. Sommers,et al.  Alkanethiolate-Protected Copper Nanoparticles: Spectroscopy, Electrochemistry, and Solid-State Morphological Evolution† , 2001 .

[186]  V. Kitaev,et al.  Silver Nanoclusters: Single-Stage Scaleable Synthesis of Monodisperse Species and Their Chirooptical Properties† , 2010 .

[187]  J. Solla-Gullón,et al.  Electrochemistry of Shape-Controlled Catalysts: Oxygen Reduction Reaction on Cubic Gold Nanoparticles , 2007 .

[188]  L. Rodríguez-Sánchez,et al.  Electrochemical Synthesis of Silver Nanoparticles , 2000 .

[189]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[190]  Samir Kumar Pal,et al.  Copper Quantum Clusters in Protein Matrix: Potential Sensor of Pb 2+ Ion , 2022 .

[191]  Y. Tong,et al.  Mechanistic insights into the Brust-Schiffrin two-phase synthesis of organo-chalcogenate-protected metal nanoparticles. , 2011, Journal of the American Chemical Society.

[192]  Lai‐Sheng Wang,et al.  Facile syntheses of monodisperse ultrasmall Au clusters. , 2006, The journal of physical chemistry. B.

[193]  T. Pradeep,et al.  Ag(9) quantum cluster through a solid-state route. , 2010, Journal of the American Chemical Society.

[194]  Shaowei Chen Chemical manipulations of nanoscale electron transfers , 2004 .

[195]  Wei Chen,et al.  Copper nitride nanocubes: size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. , 2011, Journal of the American Chemical Society.

[196]  Zhong Lin Wang,et al.  Synthesis of Tetrahexahedral Platinum Nanocrystals with High-Index Facets and High Electro-Oxidation Activity , 2007, Science.

[197]  K. Keating,et al.  Novel triicosahedral structure of the largest metal alloy cluster: hexachlorododecakis(triphenylphosphine)-gold-silver cluster [(Ph3P)12Au13Ag12Cl6]m+ , 1984 .

[198]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[199]  H. Murayama,et al.  Formation of Pdn(SR)m clusters (n<60) in the reactions of PdCl2 and RSH (R=n-C18H37, n-C12H25) , 2002 .

[200]  J. Wilcoxon,et al.  Synthesis, structure and properties of metal nanoclusters. , 2006, Chemical Society reviews.

[201]  Wei Chen,et al.  IR Optical Properties of Pt Nanoparticles and Their Agglomerates Investigated by in Situ FTIRS Using CO as the Probe Molecule , 2003 .

[202]  G. Hutchings,et al.  Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation , 2008, Science.

[203]  J. Nørskov,et al.  Making gold less noble , 2000 .

[204]  Synthesis of water-soluble undecagold cluster compounds of potential importance in electron microscopic and other studies of biological systems , 1978 .

[205]  Royce W Murray,et al.  Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. , 2008, Chemical reviews.

[206]  Lajos P. Balogh,et al.  Poly(Amidoamine) Dendrimer-Templated Nanocomposites. 1. Synthesis of Zerovalent Copper Nanoclusters , 1998 .

[207]  S. Nair,et al.  Download details: IP Address: 203.199.213.66 , 2009 .

[208]  Yutaro Kamei,et al.  Generation of small gold clusters with unique geometries through cluster-to-cluster transformations: octanuclear clusters with edge-sharing gold tetrahedron motifs. , 2011, Angewandte Chemie.

[209]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[210]  A. Henglein,et al.  Reduction of Ag+ on Polyacrylate Chains in Aqueous Solution , 1998 .

[211]  R. Jin,et al.  One‐Pot Synthesis of Au25(SG)18 2‐ and 4‐nm Gold Nanoparticles and Comparison of Their Size‐Dependent Properties , 2011 .

[212]  A. Bleloch,et al.  Synthesis of omega-hydroxy hexathiolate-protected subnanometric gold clusters. , 2007, Journal of the American Chemical Society.

[213]  Christopher J. Kiely,et al.  Synthesis and reactions of functionalised gold nanoparticles , 1995 .

[214]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[215]  M. Manassero,et al.  Synthesis and characterization of new iron-palladium and iron-platinum carbonyl anionic clusters , 1980 .

[216]  T. Ueda,et al.  Synthesis and Chiroptical Study of D/L-Penicillamine-Capped Silver Nanoclusters , 2007 .

[217]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[218]  Jianping Xie,et al.  Protein-directed synthesis of highly fluorescent gold nanoclusters. , 2009, Journal of the American Chemical Society.

[219]  C N R Rao,et al.  The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials. , 2008, Accounts of chemical research.

[220]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[221]  Y. Negishi,et al.  Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters. , 2005, Journal of the American Chemical Society.

[222]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[223]  R. Murray,et al.  Quantized Double Layer Charging of Nanoparticle Films Assembled Using Carboxylate/(Cu2+or Zn2+)/Carboxylate Bridges , 2000 .

[224]  Y. Negishi,et al.  Isolation and structural characterization of magic silver clusters protected by 4-(tert-butyl)benzyl mercaptan. , 2011, Chemical communications.

[225]  M. Delcourt,et al.  Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction , 1985, Nature.

[226]  H. Yao,et al.  Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. , 2005, Journal of the American Chemical Society.

[227]  Wei Chen,et al.  Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction , 2012 .

[228]  M. Mostafavi,et al.  Study of the interaction between polyacrylate and silver oligomer clusters , 1993 .

[229]  Peter P. Edwards,et al.  Metal nanoparticles and their assemblies , 2000 .

[230]  J. Belloni Photography: enhancing sensitivity by silver-halide crystal doping , 2003 .

[231]  J. W. Hudgens,et al.  Ligand Exchange Reactions in the Formation of Diphosphine-Protected Gold Clusters , 2008 .

[232]  D. Ghosh,et al.  Dithiocarbamate-capped silver nanoparticles. , 2006, The journal of physical chemistry. B.

[233]  R. Jin,et al.  Kinetically controlled, high-yield synthesis of Au25 clusters. , 2008, Journal of the American Chemical Society.

[234]  Nai-Tzu Chen,et al.  The protease-mediated nucleus shuttles of subnanometer gold quantum dots for real-time monitoring of apoptotic cell death. , 2010, Journal of the American Chemical Society.

[235]  J. Lee,et al.  Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. , 2011, ACS nano.

[236]  R. Jin,et al.  Reversible switching of magnetism in thiolate-protected Au25 superatoms. , 2009, Journal of the American Chemical Society.

[237]  Fu-Ken Liu,et al.  Separation of nanometer gold particles by size exclusion chromatography , 1999 .

[238]  Kemin Wang,et al.  Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. , 2010, Nanoscale.

[239]  Hai‐feng Zhang,et al.  Toward the Solution Synthesis of the Tetrahedral Au20 Cluster , 2004 .

[240]  Wei Chen,et al.  Iridium-platinum alloy nanoparticles: Composition-dependent electrocatalytic activity for formic acid oxidation , 2011 .

[241]  L. Dal Negro,et al.  Silver nanoparticles with broad multiband linear optical absorption. , 2009, Angewandte Chemie.

[242]  X. Xie,et al.  Single-molecule enzymatic dynamics. , 1998, Science.

[243]  Yasushi Inouye,et al.  Fluorescent platinum nanoclusters: synthesis, purification, characterization, and application to bioimaging. , 2011, Angewandte Chemie.

[244]  Y. Negishi,et al.  Chromatographic isolation of "missing" Au55 clusters protected by alkanethiolates. , 2006, Journal of the American Chemical Society.

[245]  R. Murray,et al.  Poly(ethylene glycol) ligands for high-resolution nanoparticle mass spectrometry. , 2007, Journal of the American Chemical Society.

[246]  R. Murray,et al.  FAB mass spectrometry of Au25(SR)18 nanoparticles. , 2008, Analytical chemistry.

[247]  Shaowei Chen,et al.  Electrochemical quartz crystal microbalance studies of the rectified quantized charging of gold nanoparticle multilayers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[248]  J. Rivas,et al.  Synthesis of atomic gold clusters with strong electrocatalytic activities. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[249]  S. Nie,et al.  Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. , 2008, Chemical Society reviews.

[250]  R. Whetten,et al.  Near-Infrared Luminescence from Small Gold Nanocrystals , 2000 .

[251]  L. F. Dahl,et al.  H12Pd28(PtPMe3)(PtPPh3)12(CO)27, a High-Nuclearity Pd28Pt13 Cluster Containing 12 Hydrido Atoms: A Possible Molecular Hydrogen-Storage Model for Palladium Metal , 1997 .

[252]  R. Jin,et al.  Ambient Synthesis of Au144(SR)60 Nanoclusters in Methanol , 2011 .

[253]  Hanfan Liu,et al.  Continuous Synthesis of Colloidal Metal Nanoclusters by Microwave Irradiation , 2000 .

[254]  John R. Miller,et al.  Charge Transfer on the Nanoscale: Current Status , 2003 .

[255]  D. Ghosh,et al.  Dithiocarbamate-protected ruthenium nanoparticles: Synthesis, spectroscopy, electrochemistry and STM studies , 2007 .

[256]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[257]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[258]  Tapas Kumar Maji,et al.  Supramolecular hydrogels and high-aspect-ratio nanofibers through charge-transfer-induced alternate coassembly. , 2010, Angewandte Chemie.

[259]  Younan Xia,et al.  Gold nanostructures: a class of multifunctional materials for biomedical applications. , 2011, Chemical Society reviews.

[260]  R. Jin,et al.  Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation , 2008 .

[261]  J. Lakowicz,et al.  Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. , 2005, Journal of the American Chemical Society.

[262]  Shaowei Chen,et al.  Surface Manipulation of the Electronic Energy of Subnanometer-Sized Gold Clusters: An Electrochemical and Spectroscopic Investigation , 2003 .

[263]  G T Wei,et al.  Shape separation of nanometer gold particles by size-exclusion chromatography. , 1999, Analytical chemistry.

[264]  C. Aikens,et al.  Origin of intense chiroptical effects in undecagold subnanometer particles. , 2010, Journal of the American Chemical Society.

[265]  A. Henglein Formation and Absorption Spectrum of Copper Nanoparticles from the Radiolytic Reduction of Cu(CN)2 , 2000 .

[266]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[267]  T. Slee,et al.  Bonding models for ligated and bare clusters , 1990 .

[268]  Wendy J Crookes-Goodson,et al.  Bio-directed synthesis and assembly of nanomaterials. , 2008, Chemical Society reviews.

[269]  F. Cotton,et al.  The Existence of the Re3,Cl9 Cluster in Anhydrous Rhenium(III) Chloride and Its Persistence in Solutions of Rhenium (III) Chloride , 1964 .

[270]  A. Henglein,et al.  Formation of unstabilized oligomeric silver clusters during the reduction of Ag+ ions in aqueous solution , 1990 .

[271]  Xiao-li Cheng,et al.  Gold‐Nanocluster‐Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water , 2010 .

[272]  Joseph Irudayaraj,et al.  Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. , 2011, Analytical chemistry.

[273]  F. Cotton Metal Atom Clusters in Oxide Systems , 1964 .

[274]  R. Jin,et al.  Facile, large-scale synthesis of dodecanethiol-stabilized Au38 clusters. , 2009, The journal of physical chemistry. A.

[275]  R. Jin,et al.  Size focusing: a methodology for synthesizing atomically precise gold nanoclusters , 2010 .

[276]  R. Arakawa,et al.  Microwave-assisted polyol synthesis of copper nanocrystals without using additional protective agents. , 2011, Chemical communications.

[277]  J. Creighton,et al.  Ultraviolet–visible absorption spectra of the colloidal metallic elements , 1991 .

[278]  Robert L. Whetten,et al.  Isolation and Selected Properties of a 10.4 kDa Gold:Glutathione Cluster Compound , 1998 .

[279]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[280]  Xiaobo Shi,et al.  Cluster of clusters: structure of a novel 38-atom cluster (p-tolyl3P)12Au18Ag20Cl14 , 1988 .

[281]  Michael H. Huang,et al.  Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[282]  S. Lundqvist,et al.  Photoluminescence of noble metals , 1988 .

[283]  M. López-Quintela,et al.  Microemulsion dynamics and reactions in microemulsions , 2004 .

[284]  Jun Li,et al.  Evidence of significant covalent bonding in Au(CN)(2)(-). , 2009, Journal of the American Chemical Society.

[285]  R. Lennox,et al.  New insights into Brust-Schiffrin metal nanoparticle synthesis. , 2010, Journal of the American Chemical Society.

[286]  R. Jin,et al.  On the ligand's role in the fluorescence of gold nanoclusters. , 2010, Nano letters.

[287]  Wolfgang J. Parak,et al.  Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. , 2009, ACS nano.

[288]  Shu Wang,et al.  Surfactant-Free Synthesis and Functionalization of Highly Fluorescent Gold Quantum Dots , 2008 .

[289]  G. Schmid,et al.  Current and future applications of nanoclusters , 2010 .

[290]  K. Swider-Lyons,et al.  Enhanced Oxygen Reduction Activity in Acid by Tin-Oxide Supported Au Nanoparticle Catalysts , 2006 .

[291]  M. Pileni,et al.  Copper Metallic Particles Synthesized "in Situ" in Reverse Micelles: Influence of Various Parameters on the Size of the Particles , 1995 .

[292]  R. Dickson,et al.  Highly fluorescent, water-soluble, size-tunable gold quantum dots. , 2004, Physical review letters.

[293]  Manfred T. Reetz,et al.  Size-Selective Synthesis of Nanostructured Transition Metal Clusters , 1994 .

[294]  T. Pradeep,et al.  Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[295]  Wei Chen,et al.  One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. , 2011, Journal of the American Chemical Society.

[296]  Y. Iwasaki,et al.  Stability of the DMF-protected Au nanoclusters: photochemical, dispersion, and thermal properties. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[297]  Wei Chen,et al.  Copper nanoclusters: Synthesis, characterization and properties , 2012 .

[298]  Justin D. Debord,et al.  The monolayer thickness dependence of quantized double-layer capacitances of monolayer-protected gold clusters. , 1999, Analytical chemistry.

[299]  L. Lewis Chemical catalysis by colloids and clusters , 1993 .

[300]  James E. Martin,et al.  Size Distributions of Gold Nanoclusters Studied by Liquid Chromatography , 2000 .

[301]  Y. Negishi,et al.  Extremely high stability of glutathionate-protected Au25 clusters against core etching. , 2007, Small.

[302]  Robert L. Whetten,et al.  Visible to Infrared Luminescence from a 28-Atom Gold Cluster , 2002 .

[303]  James F Rusling,et al.  Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. , 2009, ACS nano.

[304]  J. Dupont,et al.  On the structural and surface properties of transition-metal nanoparticles in ionic liquids. , 2010, Chemical Society reviews.

[305]  A. Kaldor,et al.  Gold clusters: reactions and deuterium uptake , 1991 .

[306]  P. Barbara,et al.  Single-Molecule Spectroscopy of the Conjugated Polymer MEH-PPV , 1999 .

[307]  D. Ghosh,et al.  Large-scale electrochemical synthesis of SnO2 nanoparticles , 2008, Journal of Materials Science.