A Compressed sensing analog-to-information converter with edge-triggered SAR ADC Core

This paper presents the design and implementation of an analog-to-information converter (AIC) based on compressed sensing. The core of the AIC is an edge-triggered charge-sharing SAR ADC. Compressed sensing is achieved through random sampling and asynchronous successive approximation conversion using the ADC core. Implemented in 90nm CMOS, the prototype SAR ADC core achieves a maximum sample rate of 9.5MS/s, an ENOB of 9.3 bits, and consumes 550μW from a 1.2V supply. Measurement results of the compressed sensing AIC demonstrate effective sub-Nyquist random sampling and reconstruction of signals with sparse frequency support suitable for wideband spectrum sensing applications. When accounting for the increased input bandwidth compared to Nyquist, the AIC achieves an effective FOM of 10.2fJ/conversion-step.

[1]  E.J. Candes Compressive Sampling , 2022 .

[2]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[3]  Sergiy A. Vorobyov,et al.  Segmented Compressed Sampling for Analog-to-Information Conversion: Method and Performance Analysis , 2010, IEEE Transactions on Signal Processing.

[4]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[5]  S. Kirolos,et al.  Random Sampling for Analog-to-Information Conversion of Wideband Signals , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[6]  D.J. Brady,et al.  Compression at the Physical Interface , 2008, IEEE Signal Processing Magazine.

[7]  Marco F. Duarte,et al.  Spectral compressive sensing , 2013 .

[8]  J. Haupt,et al.  A Nyquist folding analog-to-information receiver , 2008, 2008 42nd Asilomar Conference on Signals, Systems and Computers.

[9]  Anna C. Gilbert,et al.  An analog-to-information converter for wideband signals using a time encoding machine , 2011, 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE).

[10]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[11]  Rodney A. Kennedy,et al.  Effects of basis-mismatch in compressive sampling of continuous sinusoidal signals , 2010, 2010 2nd International Conference on Future Computer and Communication.

[12]  Yonina C. Eldar,et al.  From Theory to Practice: Sub-Nyquist Sampling of Sparse Wideband Analog Signals , 2009, IEEE Journal of Selected Topics in Signal Processing.

[13]  Vladimir Stojanovic,et al.  A signal-agnostic compressed sensing acquisition system for wireless and implantable sensors , 2010, IEEE Custom Integrated Circuits Conference 2010.

[14]  Sameer R. Sonkusale,et al.  A Compressed Sensing Analog-to-Information Converter With Edge-Triggered SAR ADC Core , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  S. Kirolos,et al.  Analog-to-Information Conversion via Random Demodulation , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[16]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[17]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[18]  Aswin C. Sankaranarayanan,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[19]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[20]  P. R. Gray,et al.  A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter , 1999, IEEE J. Solid State Circuits.

[21]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[22]  J. Tropp Algorithms for simultaneous sparse approximation. Part II: Convex relaxation , 2006, Signal Process..

[23]  Jan Craninckx,et al.  A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[24]  Christian Vogel,et al.  The impact of combined channel mismatch effects in time-interleaved ADCs , 2005, IEEE Transactions on Instrumentation and Measurement.

[25]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[26]  A. Robert Calderbank,et al.  Sensitivity to Basis Mismatch in Compressed Sensing , 2010, IEEE Transactions on Signal Processing.

[27]  Tzyy-Ping Jung,et al.  Compressed Sensing for Energy-Efficient Wireless Telemonitoring of Noninvasive Fetal ECG Via Block Sparse Bayesian Learning , 2012, IEEE Transactions on Biomedical Engineering.

[28]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[29]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.