Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk
暂无分享,去创建一个
Jane E. Carpenter | M. Beckmann | A. Børresen-Dale | E. Ziv | C. Vachon | Jingmei Li | K. Czene | P. Hall | J. Olson | F. Couch | A. Schneeweiss | J. Chang-Claude | S. Chanock | M. García-Closas | O. Olopade | A. Wolk | G. Giles | K. Muir | C. Haiman | E. John | T. Dörk | M. Southey | A. Lophatananon | D. Easton | P. Kraft | R. Tamimi | G. Rennert | R. Scott | A. Hollestelle | Jingjing Liu | Chen-Yang Shen | J. Peto | E. Khusnutdinova | K. Offit | L. Le Marchand | J. Spinelli | N. Orr | H. Brauch | V. Kristensen | R. Kåresen | C. Sohn | P. Hillemanns | X. Shu | W. Zheng | A. Ziogas | H. Anton-Culver | P. Guénel | U. Menon | A. Dunning | R. Luben | D. Eccles | S. Bojesen | H. Nevanlinna | N. Bogdanova | P. Devilee | R. Milne | U. Hamann | A. Mannermaa | L. Ottestad | M. Shah | C. Clarke | B. Naume | K. Sahlberg | L. Bernstein | Sung-Won Kim | A. Lindblom | K. Michailidou | J. Dennis | M. Schmidt | M. Bolla | Qin Wang | K. Aittomäki | A. Meindl | R. Schmutzler | H. Flyger | T. Truong | B. Burwinkel | I. Andrulis | A. Mulligan | S. Margolin | M. Hooning | V. Arndt | A. Swerdlow | J. Figueroa | M. Goldberg | T. Brüning | P. Peterlongo | S. Manoukian | A. Jakubowska | J. Lubiński | N. Antonenkova | K. Matsuo | Hidemi Ito | H. Cai | S. Teo | M. Hartman | Q. Cai | J. Simard | P. Pharoah | S. Neuhausen | C. V. van Asperen | M. Bermisheva | D. Torres | M. Dwek | W. Tapper | D. Campa | F. Canzian | S. Gapstur | J. Geisler | M. Untch | M. Hou | R. Keeman | Sue-Kyung Park | D. Huo | K. Aronson | S. Hart | E. Schlichting | T. Sauer | C. Ambrosone | D. Plaseska-Karanfilska | M. Ruebner | M. Daly | A. Fosså | M. Manoochehri | D. Goldgar | O. Engebråten | Å. Helland | V. Haakensen | J. García-Saenz | J. Collée | L. Fritschi | M. Terry | T. Yamaji | M. Iwasaki | R. Kaaks | H. Rennert | Christopher Scott | S. Mariapun | N. Håkansson | G. Torres-Mejía | M. Gago-Domínguez | J. Martens | Ji-Yeob Choi | M. Gaudet | N. Arnold | A. Romero | T. Ahearn | P. Auvinen | S. Behrens | A. Eliassen | M. Jakimovska | D. Mavroudis | N. Presneau | B. Rack | V. Rhenius | E. Saloustros | P. Harrington | I. Briceño | Peter Simpson | Alison Davis | N. Pathmanathan | Dinny Graham | T. Maurer | P. Fasching | M. Holmen | G. G. Alnæs | Hampus Olsson | M. Riis | Heiko Becher | A. Augustinsson | H. Brenner | M. Christiaens | D. Kang | J. Hopper | K. Reinertsen | C. Kiserud | Allison W. Kurian | D. Yip | J. E. Castelao | D. J. Hunter | R. Rau‐Murthy | Nadja Bogdanova-Markov | S. Brucker | I. dos-Santos-Silva | Mythily Sachchithananthan | Kristine K. Anne-Lise Lars Rolf Ellen Marit Muri Toril Vild Sahlberg Børresen-Dale Ottestad Kåresen | Deb Marsh | R. Baxter | W. J. C. Prager - van der Smissen | Christine Deborah Rodney Robert Desmond Jane Alison Nirmala Clarke Marsh Scott Baxter Yip Carpenter
[1] Kristen S Purrington,et al. Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes , 2018, American Journal of Human Genetics.
[2] K. D. Sørensen,et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci , 2018, Nature Genetics.
[3] Zhihua Liu,et al. Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13 , 2018, Proceedings of the National Academy of Sciences.
[4] P. Kantoff,et al. Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[5] Gary D Bader,et al. Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.
[6] Michael Jones,et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer , 2017, Nature Genetics.
[7] Dennis J. Hazelett,et al. The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.
[8] Wei Chen,et al. Association between germline homeobox B13 (HOXB13) G84E allele and prostate cancer susceptibility: a meta-analysis and trial sequential analysis , 2016, Oncotarget.
[9] J. Foekens,et al. Recurrent HOXB13 mutations in the Dutch population do not associate with increased breast cancer risk , 2016, Scientific Reports.
[10] Chao Lu,et al. Retrospective study , 2016, Medicine.
[11] E. Antonarakis,et al. Clinical Relevance of Androgen Receptor Splice Variants in Castration-Resistant Prostate Cancer , 2015, Current Treatment Options in Oncology.
[12] Xiaodong Li,et al. Germline HOXB13 p.Gly84Glu mutation and cancer susceptibility: a pooled analysis of 25 epidemiological studies with 145,257 participates , 2015, Oncotarget.
[13] Nazneen Rahman,et al. Gene-panel sequencing and the prediction of breast-cancer risk. , 2015, The New England journal of medicine.
[14] Kai Zhang,et al. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding , 2014, Nature Genetics.
[15] H. Grönberg,et al. A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. , 2014, European urology.
[16] Yaogang Wang,et al. Two-gene expression ratio as predictor for breast cancer treated with tamoxifen: evidence from meta-analysis , 2014, Tumor Biology.
[17] B. Cai,et al. G84E mutation in HOXB13 is firmly associated with prostate cancer risk: a meta-analysis , 2014, Tumor Biology.
[18] Howard Y. Chang,et al. HOXB13 mediates tamoxifen resistance and invasiveness in human breast cancer by suppressing ERα and inducing IL-6 expression. , 2013, Cancer research.
[19] L. Aaltonen,et al. HOXB13 G84E Mutation in Finland: Population-Based Analysis of Prostate, Breast, and Colorectal Cancer Risk , 2013, Cancer Epidemiology, Biomarkers & Prevention.
[20] J. Lubiński,et al. The HOXB13 p.Gly84Glu mutation is not associated with the risk of breast cancer , 2012, Breast Cancer Research and Treatment.
[21] A. Whittemore,et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG) , 2012, Human Genetics.
[22] A. Whittemore,et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG) , 2012, Human Genetics.
[23] Swneke D. Bailey,et al. Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.
[24] F. Couch,et al. Association of a HOXB13 variant with breast cancer. , 2012, New England Journal of Medicine.
[25] J. Carpten,et al. Germline mutations in HOXB13 and prostate-cancer risk. , 2012, The New England journal of medicine.
[26] C. Jung,et al. HOXB13 is co-localized with androgen receptor to suppress androgen-stimulated prostate-specific antigen expression , 2010, Anatomy & cell biology.
[27] L. Skoog,et al. Predictive relevance of HOXB13 protein expression for tamoxifen benefit in breast cancer , 2010, Breast Cancer Research.
[28] D. McDonnell,et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. , 2009, Molecular cell.
[29] F. Schmidt. Meta-Analysis , 2008 .
[30] K. Coser,et al. The Prognostic Biomarkers HOXB13, IL17BR, and CHDH Are Regulated by Estrogen in Breast Cancer , 2007, Clinical Cancer Research.
[31] J. Foekens,et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.
[32] Wei Wang,et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. , 2004, Cancer cell.