Germline HOXB13 mutations p.G84E and p.R217C do not confer an increased breast cancer risk

Jane E. Carpenter | M. Beckmann | A. Børresen-Dale | E. Ziv | C. Vachon | Jingmei Li | K. Czene | P. Hall | J. Olson | F. Couch | A. Schneeweiss | J. Chang-Claude | S. Chanock | M. García-Closas | O. Olopade | A. Wolk | G. Giles | K. Muir | C. Haiman | E. John | T. Dörk | M. Southey | A. Lophatananon | D. Easton | P. Kraft | R. Tamimi | G. Rennert | R. Scott | A. Hollestelle | Jingjing Liu | Chen-Yang Shen | J. Peto | E. Khusnutdinova | K. Offit | L. Le Marchand | J. Spinelli | N. Orr | H. Brauch | V. Kristensen | R. Kåresen | C. Sohn | P. Hillemanns | X. Shu | W. Zheng | A. Ziogas | H. Anton-Culver | P. Guénel | U. Menon | A. Dunning | R. Luben | D. Eccles | S. Bojesen | H. Nevanlinna | N. Bogdanova | P. Devilee | R. Milne | U. Hamann | A. Mannermaa | L. Ottestad | M. Shah | C. Clarke | B. Naume | K. Sahlberg | L. Bernstein | Sung-Won Kim | A. Lindblom | K. Michailidou | J. Dennis | M. Schmidt | M. Bolla | Qin Wang | K. Aittomäki | A. Meindl | R. Schmutzler | H. Flyger | T. Truong | B. Burwinkel | I. Andrulis | A. Mulligan | S. Margolin | M. Hooning | V. Arndt | A. Swerdlow | J. Figueroa | M. Goldberg | T. Brüning | P. Peterlongo | S. Manoukian | A. Jakubowska | J. Lubiński | N. Antonenkova | K. Matsuo | Hidemi Ito | H. Cai | S. Teo | M. Hartman | Q. Cai | J. Simard | P. Pharoah | S. Neuhausen | C. V. van Asperen | M. Bermisheva | D. Torres | M. Dwek | W. Tapper | D. Campa | F. Canzian | S. Gapstur | J. Geisler | M. Untch | M. Hou | R. Keeman | Sue-Kyung Park | D. Huo | K. Aronson | S. Hart | E. Schlichting | T. Sauer | C. Ambrosone | D. Plaseska-Karanfilska | M. Ruebner | M. Daly | A. Fosså | M. Manoochehri | D. Goldgar | O. Engebråten | Å. Helland | V. Haakensen | J. García-Saenz | J. Collée | L. Fritschi | M. Terry | T. Yamaji | M. Iwasaki | R. Kaaks | H. Rennert | Christopher Scott | S. Mariapun | N. Håkansson | G. Torres-Mejía | M. Gago-Domínguez | J. Martens | Ji-Yeob Choi | M. Gaudet | N. Arnold | A. Romero | T. Ahearn | P. Auvinen | S. Behrens | A. Eliassen | M. Jakimovska | D. Mavroudis | N. Presneau | B. Rack | V. Rhenius | E. Saloustros | P. Harrington | I. Briceño | Peter Simpson | Alison Davis | N. Pathmanathan | Dinny Graham | T. Maurer | P. Fasching | M. Holmen | G. G. Alnæs | Hampus Olsson | M. Riis | Heiko Becher | A. Augustinsson | H. Brenner | M. Christiaens | D. Kang | J. Hopper | K. Reinertsen | C. Kiserud | Allison W. Kurian | D. Yip | J. E. Castelao | D. J. Hunter | R. Rau‐Murthy | Nadja Bogdanova-Markov | S. Brucker | I. dos-Santos-Silva | Mythily Sachchithananthan | Kristine K. Anne-Lise Lars Rolf Ellen Marit Muri Toril Vild Sahlberg Børresen-Dale Ottestad Kåresen | Deb Marsh | R. Baxter | W. J. C. Prager - van der Smissen | Christine Deborah Rodney Robert Desmond Jane Alison Nirmala Clarke Marsh Scott Baxter Yip Carpenter

[1]  Kristen S Purrington,et al.  Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes , 2018, American Journal of Human Genetics.

[2]  K. D. Sørensen,et al.  Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci , 2018, Nature Genetics.

[3]  Zhihua Liu,et al.  Diverse AR-V7 cistromes in castration-resistant prostate cancer are governed by HoxB13 , 2018, Proceedings of the National Academy of Sciences.

[4]  P. Kantoff,et al.  Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  Gary D Bader,et al.  Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.

[6]  Michael Jones,et al.  Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer , 2017, Nature Genetics.

[7]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[8]  Wei Chen,et al.  Association between germline homeobox B13 (HOXB13) G84E allele and prostate cancer susceptibility: a meta-analysis and trial sequential analysis , 2016, Oncotarget.

[9]  J. Foekens,et al.  Recurrent HOXB13 mutations in the Dutch population do not associate with increased breast cancer risk , 2016, Scientific Reports.

[10]  Chao Lu,et al.  Retrospective study , 2016, Medicine.

[11]  E. Antonarakis,et al.  Clinical Relevance of Androgen Receptor Splice Variants in Castration-Resistant Prostate Cancer , 2015, Current Treatment Options in Oncology.

[12]  Xiaodong Li,et al.  Germline HOXB13 p.Gly84Glu mutation and cancer susceptibility: a pooled analysis of 25 epidemiological studies with 145,257 participates , 2015, Oncotarget.

[13]  Nazneen Rahman,et al.  Gene-panel sequencing and the prediction of breast-cancer risk. , 2015, The New England journal of medicine.

[14]  Kai Zhang,et al.  A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding , 2014, Nature Genetics.

[15]  H. Grönberg,et al.  A population-based assessment of germline HOXB13 G84E mutation and prostate cancer risk. , 2014, European urology.

[16]  Yaogang Wang,et al.  Two-gene expression ratio as predictor for breast cancer treated with tamoxifen: evidence from meta-analysis , 2014, Tumor Biology.

[17]  B. Cai,et al.  G84E mutation in HOXB13 is firmly associated with prostate cancer risk: a meta-analysis , 2014, Tumor Biology.

[18]  Howard Y. Chang,et al.  HOXB13 mediates tamoxifen resistance and invasiveness in human breast cancer by suppressing ERα and inducing IL-6 expression. , 2013, Cancer research.

[19]  L. Aaltonen,et al.  HOXB13 G84E Mutation in Finland: Population-Based Analysis of Prostate, Breast, and Colorectal Cancer Risk , 2013, Cancer Epidemiology, Biomarkers & Prevention.

[20]  J. Lubiński,et al.  The HOXB13 p.Gly84Glu mutation is not associated with the risk of breast cancer , 2012, Breast Cancer Research and Treatment.

[21]  A. Whittemore,et al.  HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG) , 2012, Human Genetics.

[22]  A. Whittemore,et al.  HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG) , 2012, Human Genetics.

[23]  Swneke D. Bailey,et al.  Breast cancer risk-associated SNPs modulate the affinity of chromatin for FOXA1 and alter gene expression , 2012, Nature Genetics.

[24]  F. Couch,et al.  Association of a HOXB13 variant with breast cancer. , 2012, New England Journal of Medicine.

[25]  J. Carpten,et al.  Germline mutations in HOXB13 and prostate-cancer risk. , 2012, The New England journal of medicine.

[26]  C. Jung,et al.  HOXB13 is co-localized with androgen receptor to suppress androgen-stimulated prostate-specific antigen expression , 2010, Anatomy & cell biology.

[27]  L. Skoog,et al.  Predictive relevance of HOXB13 protein expression for tamoxifen benefit in breast cancer , 2010, Breast Cancer Research.

[28]  D. McDonnell,et al.  The homeodomain protein HOXB13 regulates the cellular response to androgens. , 2009, Molecular cell.

[29]  F. Schmidt Meta-Analysis , 2008 .

[30]  K. Coser,et al.  The Prognostic Biomarkers HOXB13, IL17BR, and CHDH Are Regulated by Estrogen in Breast Cancer , 2007, Clinical Cancer Research.

[31]  J. Foekens,et al.  HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[32]  Wei Wang,et al.  A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. , 2004, Cancer cell.