Variable velocity range imaging of the choroid with dual-beam optical coherence angiography.

In this study, we present dual-beam Doppler optical coherence angiography with variable beam separation. Altering beam distance, independently of the scanning protocol, provides a flexible way to select the velocity range of detectable blood flow. This system utilized a one-micrometer wavelength light source to visualize deep into the posterior eye, i.e., the choroid. Two-dimensional choroidal vasculature maps of a human subject acquired with different beam separations, and hence with several velocity ranges, are presented. Combining these maps yields a semi-quantitative visualization of axial velocity of the choroidal circulation. The proposed technique may be useful for identifying choroidal abnormalities that occur in pathological conditions of the eye.

[1]  S. Hayreh Physiological anatomy of the choroidal vascular bed , 1983, International Ophthalmology.

[2]  F. Jaillon,et al.  Dual-beam-scan Doppler optical coherence angiography for birefringence-artifact-free vasculature imaging. , 2012, Optics express.

[3]  Leopold Schmetterer,et al.  Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. , 2008, Optics letters.

[4]  G. Ying,et al.  Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. , 2005, Investigative ophthalmology & visual science.

[5]  R. Leitgeb,et al.  Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. , 2011, Optics express.

[6]  E. Friedman A hemodynamic model of the pathogenesis of age-related macular degeneration. , 1997, American journal of ophthalmology.

[7]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[8]  S. Yun,et al.  Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm. , 2005, Optics express.

[9]  Maciej Wojtkowski,et al.  Scanning protocols dedicated to smart velocity ranging in spectral OCT. , 2009, Optics express.

[10]  P. Amalric The choriocapillaris in the macular area , 1983, International Ophthalmology.

[11]  Joseph A Izatt,et al.  Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography. , 2009, Optics express.

[12]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[13]  R. Zawadzki,et al.  Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. , 2003, Optics express.

[14]  J. Izatt,et al.  Real-time optical coherence tomography of the anterior segment at 1310 nm. , 2001, Archives of ophthalmology.

[15]  R P Danis,et al.  Color Doppler imaging discloses reduced ocular blood flow velocities in nonexudative age-related macular degeneration. , 1999, American journal of ophthalmology.

[16]  L. Sakata,et al.  Optical coherence tomography of the retina and optic nerve – a review , 2009, Clinical & experimental ophthalmology.

[17]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[18]  Wolfgang Drexler,et al.  State-of-the-art retinal optical coherence tomography , 2008, Progress in Retinal and Eye Research.

[19]  Teresa C. Chen,et al.  In vivo three-dimensional imaging of neovascular age-related macular degeneration using optical frequency domain imaging at 1050 nm. , 2008, Investigative ophthalmology & visual science.

[20]  Sanket U. Shah,et al.  Optical Coherence Tomography of Retinal and Choroidal Tumors , 2011, Journal of ophthalmology.

[21]  Leopold Schmetterer,et al.  Ocular blood flow in diabetes and age-related macular degeneration. , 2008, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[22]  B. Feigl Age-related maculopathy – Linking aetiology and pathophysiological changes to the ischaemia hypothesis , 2008, Progress in Retinal and Eye Research.

[23]  Jannick P. Rolland,et al.  Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography , 2010, Biomedical optics express.

[24]  Shuichi Makita,et al.  Comprehensive in vivo micro-vascular imaging of the human eye by dual-beam-scan Doppler optical coherence angiography. , 2011, Optics express.

[25]  Iwona Gorczynska,et al.  Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. , 2008, Investigative ophthalmology & visual science.

[26]  Toyohiko Yatagai,et al.  Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography. , 2007, Optics express.

[27]  Martin Leahy,et al.  In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT) , 2011, Biomedical optics express.

[28]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[29]  J. J. Laey Fluorescein angiography of the choroid in health and disease , 1983, International Ophthalmology.

[30]  R. Leitgeb,et al.  Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. , 2007, Optics express.

[31]  J. Barton,et al.  Flow measurement without phase information in optical coherence tomography images. , 2005, Optics express.

[32]  Z. Ding,et al.  Choroidal laser Doppler flowmeter with enhanced sensitivity based on a scattering plate. , 2011, Journal of biomedical optics.

[33]  Zhongping Chen,et al.  Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. , 2000, Optics letters.

[34]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[35]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[36]  Gangjun Liu,et al.  Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging , 2011, Optics express.

[37]  A. Fercher,et al.  Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. , 2003, Optics express.

[38]  Sanket U. Shah,et al.  Optical Coherence Tomography of Retinal and Choroidal Tumors , 2011, Journal of ophthalmology.

[39]  Lingfeng Yu,et al.  Doppler variance imaging for three-dimensional retina and choroid angiography. , 2010, Journal of biomedical optics.

[40]  T. Yatagai,et al.  In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. , 2007, Optics express.

[41]  Byeong Ha Lee,et al.  Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography , 2011, Biomedical optics express.

[42]  S. Yun,et al.  In vivo optical frequency domain imaging of human retina and choroid. , 2006, Optics express.

[43]  Maciej Wojtkowski,et al.  Retinal assessment using optical coherence tomography , 2006, Progress in Retinal and Eye Research.

[44]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.