Regression Monte Carlo for microgrid management

We study an islanded microgrid system designed to supply a small village with the power produced by photovoltaic panels, wind turbines and a diesel generator. A battery storage system device is used to shift power from times of high renewable production to times of high demand. We introduce a methodology to solve microgrid management problem using different variants of Regression Monte Carlo algorithms and use numerical simulations to infer results about the optimal design of the grid.

[1]  Marco Pavone,et al.  Stochastic Optimal Control , 2015 .

[2]  Oriol Gomis-Bellmunt,et al.  Trends in Microgrid Control , 2014, IEEE Transactions on Smart Grid.

[3]  Zechun Hu,et al.  Stochastic optimization of the daily operation of wind farm and pumped-hydro-storage plant , 2012 .

[4]  Saad Mekhilef,et al.  Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria , 2015 .

[5]  S. Surender Reddy,et al.  Review of stochastic optimization methods for smart grid , 2017 .

[6]  Xavier Warin,et al.  STochastic OPTimization library in C , 2016 .

[7]  Michael Ludkovski,et al.  Simulation methods for stochastic storage problems: a statistical learning perspective , 2018, Energy Systems.

[8]  Russell Bent,et al.  Security-Constrained Design of Isolated Multi-Energy Microgrids , 2018, IEEE Transactions on Power Systems.

[9]  J. F. Bonnans,et al.  Continuous optimal control approaches to microgrid energy management , 2018 .

[10]  Peter Tankov,et al.  Optimal management of a wind power plant with storage capacity , 2017 .

[11]  Zechun Hu,et al.  Rolling Optimization of Wind Farm and Energy Storage System in Electricity Markets , 2015, IEEE Transactions on Power Systems.

[12]  R. Carmona,et al.  Valuation of energy storage: an optimal switching approach , 2010 .

[13]  Naoki Hayashi,et al.  Robust AC Voltage Regulation of Microgrids in Islanded Mode with Sinusoidal Internal Model , 2017 .

[14]  X. Warin Gas Storage Hedging , 2012 .

[15]  B. Bouchard,et al.  Monte-Carlo valuation of American options: facts and new algorithms to improve existing methods , 2012 .

[16]  Bernard Multon,et al.  Energy storage sizing for wind power: impact of the autocorrelation of day‐ahead forecast errors , 2013 .

[17]  Alessandro Balata,et al.  Regress-Later Monte Carlo for optimal control of Markov processes , 2017, 1712.09705.

[18]  J. Frédéric Bonnans,et al.  A stochastic continuous time model for microgrid energy management , 2016, 2016 European Control Conference (ECC).

[19]  Alessandro Balata,et al.  Regress-Later Monte Carlo for Optimal Inventory Control with applications in energy , 2017, 1703.06461.

[20]  Weihua Zhuang,et al.  Stochastic Modeling and Optimization in a Microgrid: A Survey , 2014 .

[21]  Alexander Boogert,et al.  Gas Storage Valuation Using a Monte Carlo Method , 2008 .

[22]  M. Stadler,et al.  A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids , 2017 .