Reducing Qubit Requirements while Maintaining Numerical Precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach.

We present a basis-set-free approach to the variational quantum eigensolver using an adaptive representation of the spatial part of molecular wave functions. Our approach directly determines system-specific representations of qubit Hamiltonians while fully omitting globally defined basis sets. In this work, we use directly determined pair-natural orbitals on the level of second-order perturbation theory. This results in compact qubit Hamiltonians with high numerical accuracy. We demonstrate initial applications with compact Hamiltonians on up to 22 qubits where conventional representation would for the same systems require 40-100 or more qubits. We further demonstrate reductions in the quantum circuits through the structure of the pair-natural orbitals.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  O. Klein,et al.  Zum Mehrkörperproblem der Quantentheorie , 1927 .

[3]  M. H. Kalos,et al.  Monte Carlo Calculations of the Ground State of Three- and Four-Body Nuclei , 1962 .

[4]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[5]  P. Joergensen,et al.  Second Quantization-based Methods in Quantum Chemistry , 1981 .

[6]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[7]  Rodney J. Bartlett,et al.  Selection of the reduced virtual space for correlated calculations. An application to the energy and dipole moment of H2O , 1989 .

[8]  Péter R. Surján,et al.  Second Quantized Approach to Quantum Chemistry: An Elementary Introduction , 1989 .

[9]  J. S. Dehesa,et al.  Study of some interelectronic properties in helium-like atoms , 1992 .

[10]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[11]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[12]  Gregory Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange. , 2004, The Journal of chemical physics.

[13]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[14]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[15]  Reinhold Schneider,et al.  Daubechies wavelets as a basis set for density functional pseudopotential calculations. , 2008, The Journal of chemical physics.

[16]  Isaiah Shavitt,et al.  Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory , 2009 .

[17]  Dimitrios G Liakos,et al.  Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. , 2009, The Journal of chemical physics.

[18]  Ching-Hsing Yu,et al.  SciNet: Lessons Learned from Building a Power-efficient Top-20 System and Data Centre , 2010 .

[19]  H. Nakatsuji,et al.  LiH potential energy curves for ground and excited states with the free complement local Schrödinger equation method , 2010 .

[20]  Tosio Kato,et al.  On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics , 2011 .

[21]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[22]  W. Marsden I and J , 2012 .

[23]  Edward F. Valeev,et al.  Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom. , 2012, The Journal of chemical physics.

[24]  Hiroshi Nakatsuji,et al.  Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry. , 2012, Accounts of chemical research.

[25]  R. Harrison,et al.  A new implementation of dynamic polarizability evaluation using a multi-resolution multi-wavelet basis set , 2012 .

[26]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[27]  A Eugene DePrince,et al.  Accurate Noncovalent Interaction Energies Using Truncated Basis Sets Based on Frozen Natural Orbitals. , 2013, Journal of chemical theory and computation.

[28]  Edward F. Valeev,et al.  Computing molecular correlation energies with guaranteed precision. , 2013, The Journal of chemical physics.

[29]  Luca Frediani,et al.  Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions , 2013 .

[30]  F. Bischoff Regularizing the molecular potential in electronic structure calculations. II. Many-body methods. , 2014, The Journal of chemical physics.

[31]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[32]  F. Bischoff Regularizing the molecular potential in electronic structure calculations. I. SCF methods. , 2014, The Journal of chemical physics.

[33]  G. Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree-Fock and density functional theory via linear response. , 2015, Physical chemistry chemical physics : PCCP.

[34]  Frank Neese,et al.  Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. , 2015, The Journal of chemical physics.

[35]  Hans-Joachim Werner,et al.  Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors. , 2015, Journal of chemical theory and computation.

[36]  Stefan Goedecker,et al.  Accurate and efficient linear scaling DFT calculations with universal applicability. , 2015, Physical chemistry chemical physics : PCCP.

[37]  Jakob S. Kottmann,et al.  Numerically accurate linear response-properties in the configuration-interaction singles (CIS) approximation. , 2015, Physical chemistry chemical physics : PCCP.

[38]  Luca Frediani,et al.  Magnetic properties with multiwavelets and DFT: the complete basis set limit achieved. , 2016, Physical chemistry chemical physics : PCCP.

[39]  Robert J. Harrison,et al.  MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation , 2015, SIAM J. Sci. Comput..

[40]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[41]  Jakob S. Kottmann,et al.  Coupled-Cluster in Real Space. 2. CC2 Excited States Using Multiresolution Analysis. , 2017, Journal of chemical theory and computation.

[42]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[43]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[44]  Stefan Goedecker,et al.  The Elephant in the Room of Density Functional Theory Calculations. , 2017, The journal of physical chemistry letters.

[45]  Jakob S. Kottmann,et al.  Coupled-Cluster in Real Space. 1. CC2 Ground State Energies Using Multiresolution Analysis. , 2017, Journal of chemical theory and computation.

[46]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[47]  Scott N. Genin,et al.  Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer. , 2018, Journal of chemical theory and computation.

[48]  Alán Aspuru-Guzik,et al.  The Matter Simulation (R)evolution , 2018, ACS central science.

[49]  Jakob S. Kottmann Coupled-Cluster in Real Space , 2018 .

[50]  Alán Aspuru-Guzik,et al.  Automatic Differentiation in Quantum Chemistry with Applications to Fully Variational Hartree–Fock , 2017, ACS central science.

[51]  Kanav Setia,et al.  Bravyi-Kitaev Superfast simulation of electronic structure on a quantum computer. , 2017, The Journal of chemical physics.

[52]  Ching-Hsing Yu,et al.  Deploying a Top-100 Supercomputer for Large Parallel Workloads: the Niagara Supercomputer , 2019, PEARC.

[53]  F. Bischoff Computing accurate molecular properties in real space using multiresolution analysis , 2019, State of The Art of Molecular Electronic Structure Computations: Correlation Methods, Basis Sets and More.

[54]  Ryan Babbush,et al.  Discontinuous Galerkin discretization for quantum simulation of chemistry , 2019, New Journal of Physics.

[55]  A. Dreuw,et al.  Quantum chemistry with Coulomb Sturmians: Construction and convergence of Coulomb Sturmian basis sets at the Hartree-Fock level , 2018, Physical Review A.

[56]  G. Beylkin,et al.  Dirac-Fock calculations on molecules in an adaptive multiwavelet basis. , 2019, The Journal of chemical physics.

[57]  Benjamin P Pritchard,et al.  New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community , 2019, J. Chem. Inf. Model..

[58]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[59]  Hartmut Neven,et al.  Quantum simulation of chemistry with sublinear scaling in basis size , 2018, npj Quantum Information.

[60]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[61]  Tanvi P. Gujarati,et al.  Quantum simulation of electronic structure with a transcorrelated Hamiltonian: improved accuracy with a smaller footprint on the quantum computer. , 2020, Physical Chemistry, Chemical Physics - PCCP.

[62]  P. Barkoutsos,et al.  Quantum orbital-optimized unitary coupled cluster methods in the strongly correlated regime: Can quantum algorithms outperform their classical equivalents? , 2019, The Journal of chemical physics.

[63]  J. Whitfield,et al.  Reducing qubit requirements for quantum simulation using molecular point group symmetries. , 2019, Journal of chemical theory and computation.

[64]  Luigi Genovese,et al.  Static Polarizabilities at the Basis Set Limit: A Benchmark of 124 Species , 2020, Journal of chemical theory and computation.

[65]  Daniel G A Smith,et al.  Psi4 1.4: Open-source software for high-throughput quantum chemistry. , 2020, The Journal of chemical physics.

[66]  Sungwoo Kang,et al.  ACE-Molecule: An open-source real-space quantum chemistry package. , 2020, The Journal of chemical physics.

[67]  F. Bischoff Structure of theH3molecule in a strong homogeneous magnetic field as computed by the Hartree-Fock method using multiresolution analysis , 2020 .

[68]  Thierry Deutsch,et al.  Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations. , 2020, The Journal of chemical physics.

[69]  Ryan Babbush,et al.  Increasing the Representation Accuracy of Quantum Simulations of Chemistry without Extra Quantum Resources , 2019, Physical Review X.

[70]  D. Tew,et al.  Improving the accuracy of quantum computational chemistry using the transcorrelated method , 2020, 2006.11181.

[71]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[72]  Vincent E. Elfving,et al.  Simulating quantum chemistry in the restricted Hartree-Fock space on a qubit-based quantum computing device , 2020, 2002.00035.

[73]  G. Beylkin,et al.  Real-space quasi-relativistic quantum chemistry , 2020 .

[74]  Edward F. Valeev,et al.  Direct determination of optimal pair-natural orbitals in a real-space representation: The second-order Moller-Plesset energy. , 2020, The Journal of chemical physics.

[75]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[76]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.