Algebraic Representation, Elimination and Expansion in Automated Geometric Theorem Proving

Cayley algebra and bracket algebra are important approaches to invariant computing in projective and affine geometries, but there are some difficulties in doing algebraic computation. In this paper we show how the principle “breefs” – bracket-oriented representation, elimination and expansion for factored and shortest results, can significantly simplify algebraic computations. We present several typical examples on automated theorem proving in conics and make detailed discussions on the procedure of applying the principle to automated geometric theorem proving.

[1]  Robert Bix Conics and cubics , 1998 .

[2]  Gian-Carlo Rota,et al.  On the Foundations of Combinatorial Theory: IX Combinatorial Methods in Invariant Theory , 1974 .

[3]  Yihong Wu,et al.  Automated Theorem Proving in Projective Geometry with Bracket Algebra , 2000 .

[4]  B. Sturmfels Computational Synthetic Geometry , 1989 .

[5]  Bernd Sturmfels,et al.  On the Synthetic Factorization of Projectively Invariant Polynomials , 1991, J. Symb. Comput..

[6]  Hongbo Li,et al.  Automated short proof generation for projective geometric theorems with Cayley and bracket algebras: I. Incidence geometry , 2003, J. Symb. Comput..

[7]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[8]  N. White,et al.  The bracket ring of a combinatorial geometry. I , 1975 .

[9]  Neil L. White,et al.  The Dotted Straightening Algorithm , 1991, J. Symb. Comput..

[10]  Gian-Carlo Rota,et al.  On the Exterior Calculus of Invariant Theory , 1985 .

[11]  Bernard Mourrain New Aspects of Geometrical Calculus With Invariants , 1994 .

[12]  S. Chou Mechanical Geometry Theorem Proving , 1987 .

[13]  Walter Whiteley,et al.  Invariant Computations for Analytic Projective Geometry , 1991, J. Symb. Comput..

[14]  Xiao-Shan Gao,et al.  Mathematics Mechanization and Applications , 2000 .

[15]  Hongbo Li,et al.  Automated short proof generation for projective geometric theorems with Cayley and bracket algebras: II. Conic geometry , 2003, J. Symb. Comput..

[16]  Neil L. White,et al.  Multilinear Cayley Factorization , 1991, J. Symb. Comput..

[17]  Henry Crapo,et al.  Automatic Proving of Geometric Theorems , 1995 .

[18]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[19]  Neil White,et al.  Invariant Methods in Discrete and Computational Geometry , 1995, Springer Netherlands.

[20]  Bernd Sturmfels,et al.  Computational Algebraic Geometry of Projective Configurations , 1991, J. Symb. Comput..

[21]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .