Recombinant protein expression in Escherichia coli.

[1]  W. Gilbert,et al.  Mutants that make more lac repressor. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[2]  R. L. Baldwin,et al.  Temperature dependence of the hydrophobic interaction in protein folding. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. Schein,et al.  Formation of Soluble Recombinant Proteins in Escherichia Coli is Favored by Lower Growth Temperature , 1988, Bio/Technology.

[4]  N. Galleron,et al.  Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome , 1989, Applied and environmental microbiology.

[5]  W. Bentley,et al.  Plasmid‐encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria , 1990, Biotechnology and bioengineering.

[6]  A. Makoff,et al.  High level heterologous expression in E. coli using mutant forms of the lac promoter. , 1991, Nucleic acids research.

[7]  F. Studier,et al.  Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. , 1991, Journal of molecular biology.

[8]  G. Stormo,et al.  Translation initiation in Escherichia coli: sequences within the ribosome‐binding site , 1992, Molecular microbiology.

[9]  J. Mccoy,et al.  A Thioredoxin Gene Fusion Expression System That Circumvents Inclusion Body Formation in the E. coli Cytoplasm , 1993, Bio/Technology.

[10]  Michael J. Hansen,et al.  The ompA 5′ untranslated region impedes a major pathway for mRNA degradation in Escherichia coli , 1994, Molecular microbiology.

[11]  S. A. Johnston,et al.  Release of proteins and peptides from fusion proteins using a recombinant plant virus proteinase. , 1994, Analytical biochemistry.

[12]  F. Schmid,et al.  A ribosome‐associated peptidyl‐prolyl cis/trans isomerase identified as the trigger factor. , 1995, The EMBO journal.

[13]  Enhanced activity of the bacteriophage lambda PL promoter at low temperature. , 1995, FEMS microbiology reviews.

[14]  J. Kane,et al.  Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. , 1995, Current opinion in biotechnology.

[15]  R. Doi,et al.  Prokaryotic promoters in biotechnology. , 1995, Biotechnology annual review.

[16]  S. Makrides Strategies for achieving high-level expression of genes in Escherichia coli. , 1996, Microbiological reviews.

[17]  O. Fayet,et al.  Combined effects of the signal sequence and the major chaperone proteins on the export of human cytokines in Escherichia coli , 1996, Applied and environmental microbiology.

[18]  B. Müller-Hill The lac Operon: A Short History of a Genetic Paradigm , 1996 .

[19]  J. Pogliano,et al.  Identification of the coding region for a second poly(A) polymerase in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  F. Baneyx,et al.  Protein Misfolding and Inclusion Body Formation in Recombinant Escherichia coli Cells Overexpressing Heat-shock Proteins (*) , 1996, The Journal of Biological Chemistry.

[21]  R. Baker,et al.  Protein expression using ubiquitin fusion and cleavage. , 1996, Current opinion in biotechnology.

[22]  F. Baneyx,et al.  Protein folding in the cytoplasm of Escherichia coli: requirements for the DnaK‐DnaJ‐GrpE and GroEL‐GroES molecular chaperone machines , 1996, Molecular microbiology.

[23]  K. Zahn,et al.  Overexpression of an mRNA dependent on rare codons inhibits protein synthesis and cell growth , 1996, Journal of bacteriology.

[24]  Propeptide-mediated folding in subtilisin: the intramolecular chaperone concept. , 1996, Advances in experimental medicine and biology.

[25]  J. Walker,et al.  Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. , 1996, Journal of molecular biology.

[26]  R. Sauer,et al.  Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA , 1996, Science.

[27]  J. Betton,et al.  New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH , 1996, Molecular microbiology.

[28]  S. Gottesman,et al.  Proteases and their targets in Escherichia coli. , 1996, Annual review of genetics.

[29]  Bernd Bukau,et al.  Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries , 1997, The EMBO journal.

[30]  J. Beckwith,et al.  The Role of the Thioredoxin and Glutaredoxin Pathways in Reducing Protein Disulfide Bonds in the Escherichia coliCytoplasm* , 1997, The Journal of Biological Chemistry.

[31]  F. Baneyx,et al.  Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins fromE. coli , 1997, Applied biochemistry and biotechnology.

[32]  D. Missiakas,et al.  Minireview Protein Folding in the Bacterial Periplasm , 1997 .

[33]  James C. Hu,et al.  Gene expression from plasmids containing the araBAD promoter at subsaturating inducer concentrations represents mixed populations. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  F. Baneyx,et al.  Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli , 1997, Nature Biotechnology.

[35]  B. Leiting,et al.  High-level expression of soluble protein in Escherichia coli using a His6-tag and maltose-binding-protein double-affinity fusion system. , 1997, Protein expression and purification.

[36]  A. Plückthun,et al.  The Escherichia coli SlyD Is a Metal Ion-regulated Peptidyl-prolyl cis/trans-Isomerase* , 1997, The Journal of Biological Chemistry.

[37]  G. Bennett,et al.  A method for construction of E. coli strains with multiple DNA insertions in the chromosome. , 1997, Gene.

[38]  F. Baneyx,et al.  Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. , 1997, Protein expression and purification.

[39]  O. Fayet,et al.  A set of pBR322-compatible plasmids allowing the testing of chaperone-assisted folding of proteins overexpressed in Escherichia coli. , 1997, Analytical biochemistry.

[40]  F. Baneyx,et al.  Roles of the Escherichia coli Small Heat Shock Proteins IbpA and IbpB in Thermal Stress Management: Comparison with ClpA, ClpB, and HtpG In Vivo , 1998, Journal of bacteriology.

[41]  J. Chirgwin,et al.  Order of fusions between bacterial and mammalian proteins can determine solubility in Escherichia coli. , 1998, Biochemical and biophysical research communications.

[42]  Yuan Zhang,et al.  Expression of eukaryotic proteins in soluble form in Escherichia coli. , 1998, Protein expression and purification.

[43]  P. Forrer,et al.  High-level expression of soluble heterologous proteins in the cytoplasm of Escherichia coli by fusion to the bacteriophage lambda head protein D. , 1998, Gene.

[44]  Bernd Bukau,et al.  The Hsp70 and Hsp60 Chaperone Machines , 1998, Cell.

[45]  T. Silhavy,et al.  PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA–SecY interaction during the initiation of translocation , 1998, The EMBO journal.

[46]  S. Raina,et al.  A new heat‐shock gene, ppiD, encodes a peptidyl–prolyl isomerase required for folding of outer membrane proteins in Escherichia coli , 1998, The EMBO journal.

[47]  E. Kawasaki,et al.  Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. , 1998, Gene.

[48]  G. Mackie Ribonuclease E is a 5′-end-dependent endonuclease , 1998, Nature.

[49]  A. Plückthun,et al.  Selection for a periplasmic factor improving phage display and functional periplasmic expression , 1998, Nature Biotechnology.

[50]  M. Weickert,et al.  Using chromosomal lacIQ1 to control expression of genes on high-copy-number plasmids in Escherichia coli. , 1998, Gene.

[51]  C. Georgopoulos,et al.  The ins and outs of a molecular chaperone machine. , 1998, Trends in biochemical sciences.

[52]  A. Economou Bacterial preprotein translocase: mechanism and conformational dynamics of a processive enzyme , 1998, Molecular microbiology.

[53]  R. Gourse,et al.  Identification of an UP element consensus sequence for bacterial promoters. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  A. Horwich,et al.  The Hsp 70 and Hsp 60 Review Chaperone Machines , 1998 .

[55]  S. Aiyar,et al.  Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  F. Baneyx,et al.  Scale‐up and Optimization of the Low‐Temperature Inducible cspA Promoter System , 1998, Biotechnology progress.

[57]  A. Driessen,et al.  The Sec system. , 1998, Current opinion in microbiology.

[58]  P. Bouloc,et al.  Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). , 1998, Genes & development.

[59]  G. Koningstein,et al.  Optimization of Bacteriocin Release Protein (BRP)-Mediated Protein Release by Escherichia coli: Random Mutagenesis of the pCloDF13-Derived BRP Gene To Uncouple Lethality and Quasi-Lysis from Protein Release , 1998, Applied and Environmental Microbiology.

[60]  D. Summers Timing, self‐control and a sense of direction are the secrets of multicopy plasmid stability , 1998, Molecular microbiology.

[61]  G von Heijne,et al.  Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[62]  R. Sauer,et al.  The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. , 1998, Genes & development.

[63]  D. Sherratt,et al.  Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. , 1998, Nucleic acids research.

[64]  S. Aiyar,et al.  Escherichia coli Promoters with UP Elements of Different Strengths: Modular Structure of Bacterial Promoters , 1998, Journal of bacteriology.

[65]  F. Baneyx,et al.  TolAIII co-overexpression facilitates the recovery of periplasmic recombinant proteins into the growth medium of Escherichia coli. , 1998, Protein expression and purification.

[66]  F. Mehraein-Ghomi,et al.  Importance of using lac rather than ara promoter vectors for modulating the levels of toxic gene products in Escherichia coli , 1998, Molecular microbiology.

[67]  S. Aiyar,et al.  Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase a subunit (A-tract DNAyDNA curvatureyUP element) , 1998 .

[68]  J. Swartz,et al.  Expression of Active Human Tissue-Type Plasminogen Activator in Escherichia coli , 1998, Applied and Environmental Microbiology.

[69]  G. von Heijne,et al.  The Escherichia coli SRP and SecB targeting pathways converge at the translocon , 1998, The EMBO journal.

[70]  P. Masters,et al.  High level, context dependent misincorporation of lysine for arginine in Saccharomyces cerevisiae al homeodomain expressed in Escherichia coli , 1998, Protein science : a publication of the Protein Society.

[71]  D. Olsen,et al.  High-level expression of eukaryotic polypeptides from bacterial chromosomes. , 1998, Protein expression and purification.

[72]  M. Kitagawa,et al.  Chaperone Coexpression Plasmids: Differential and Synergistic Roles of DnaK-DnaJ-GrpE and GroEL-GroES in Assisting Folding of an Allergen of Japanese Cedar Pollen, Cryj2, inEscherichia coli , 1998, Applied and Environmental Microbiology.

[73]  M. Inouye,et al.  Translational Enhancement by an Element Downstream of the Initiation Codon in Escherichia coli* , 1999, The Journal of Biological Chemistry.

[74]  Jon Beckwith,et al.  The Thioredoxin Superfamily: Redundancy, Specificity, and Gray-Area Genomics , 1999, Journal of bacteriology.

[75]  J. Keasling,et al.  Library of Synthetic 5′ Secondary Structures To Manipulate mRNA Stability in Escherichia coli , 1999, Biotechnology progress.

[76]  W J Harris,et al.  Escherichia coli skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. , 1999, Protein expression and purification.

[77]  G. Mackie,et al.  Degradation of mRNA in Escherichia coli: an old problem with some new twists. , 1999, Progress in nucleic acid research and molecular biology.

[78]  M. Inouye,et al.  Cold-shock response and cold-shock proteins. , 1999, Current opinion in microbiology.

[79]  A. J. Carpousis,et al.  mRNA degradation. A tale of poly(A) and multiprotein machines. , 1999, Trends in genetics : TIG.

[80]  D. Waugh,et al.  Escherichia coli maltose‐binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused , 1999, Protein science : a publication of the Protein Society.

[81]  H. Yanagi,et al.  Overexpression of Trigger Factor Prevents Aggregation of Recombinant Proteins in Escherichia coli , 2000, Applied and Environmental Microbiology.

[82]  W. Bentley,et al.  A Recombinant Lipoprotein Antigen against Lyme Disease Expressed in E.coli: Fermentor Operating Strategies for Improved Yield , 2000, Biotechnology progress (Print).

[83]  R C Stevens,et al.  Design of high-throughput methods of protein production for structural biology. , 2000, Structure.