Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles

This tutorial gives an overview of the use of the Wigner function as a tool for modeling optical field propagation. Particular emphasis is placed on the spatial propagation of stationary fields, as well as on the propagation of pulses through dispersive media. In the first case, the Wigner function gives a representation of the field that is similar to a radiance or weight distribution for all the rays in the system, since its arguments are both position and direction. In cases in which the field is paraxial and where the system is described by a simple linear relation in the ray regime, the Wigner function is constant under propagation along rays. An equivalent property holds for optical pulse propagation in dispersive media under analogous assumptions. Several properties and applications of the Wigner function in these contexts are discussed, as is its connection with other common phase-space distributions like the ambiguity function, the spectrogram, and the Husimi, P, Q, and Kirkwood–Rihaczek functions. Also discussed are modifications to the definition of the Wigner function that allow extending the property of conservation along paths to a wider range of problems, including nonparaxial field propagation and pulse propagation within general transparent dispersive media.

[1]  Franco Gori,et al.  Coherence and the spatial distribution of intensity , 1993 .

[2]  P. Loughlin,et al.  Approximate wave function from approximate non-representable Wigner distributions , 2008 .

[3]  A. Friberg On the Generalized Radiance Associated with Radiation from a Quasihomogeneous Planar Source , 1981 .

[4]  Tatiana Alieva,et al.  Properties of the linear canonical integral transformation. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  M. L. Calvo,et al.  Phase space tomography reconstruction of the Wigner distribution for optical beams separable in Cartesian coordinates. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  R. Glauber,et al.  Optical Coherence and Photon Statistics , 2007 .

[7]  Girish S. Agarwal,et al.  Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. II. Quantum mechanics in phase space , 1970 .

[8]  M. Berry Evolution of semiclassical quantum states in phase space , 1979 .

[9]  V. Semenov,et al.  Statistical theory for incoherent light propagation in nonlinear media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Baida Lü,et al.  Wigner-distribution-function matrix and its application to partially coherent vectorial nonparaxial beams , 2005 .

[11]  R. W. Robinett Quantum wave packet revivals , 2004 .

[12]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[13]  Antonia Papandreou-Suppappola,et al.  The power classes-quadratic time-frequency representations with scale covariance and dispersive time-shift covariance , 1999, IEEE Trans. Signal Process..

[14]  A Wax,et al.  Optical heterodyne imaging and Wigner phase space distributions. , 1996, Optics letters.

[15]  H. M. Pedersen Geometrical theory of fields radiated from three-dimensional, quasi-homogeneous sources , 1992 .

[16]  Hai-Woong Lee,et al.  Theory and application of the quantum phase-space distribution functions , 1995 .

[17]  Leon Cohen,et al.  Exact and approximate moments of a propagating pulse , 2008 .

[18]  Shinichi Tamura,et al.  Analytic relation for recovering the mutual intensity by means of intensity information , 1998 .

[19]  E. Wolf Coherence and radiometry , 1978 .

[20]  Phase-space reconstruction of focused x-ray fields. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Ray-based propagation of the cross-spectral density. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[22]  I. Walmsley,et al.  Characterization of ultrashort electromagnetic pulses , 2009 .

[23]  H. M. Pedersen Exact Geometrical Description of Free Space Radiative Energy Transfer for Scalar Wavefields , 1990 .

[24]  J. Ojeda-Castañeda,et al.  Fractional Talbot effect: analysis in phase space , 1996 .

[25]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.

[26]  H. Margenau,et al.  Correlation between Measurements in Quantum Theory , 1961 .

[27]  M Testorf Analysis of the moiré effect by use of the Wigner distribution function. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  José Azaña Time-Frequency (Wigner) Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers , 2005, EURASIP J. Adv. Signal Process..

[29]  Antonia Papandreou-Suppappola,et al.  Group delay shift covariant quadratic time-frequency representations , 2001, IEEE Trans. Signal Process..

[30]  M. Alonso,et al.  Wigner functions for nonparaxial, arbitrarily polarized electromagnetic wave fields in free space. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  M. Alonso,et al.  Phase space distributions tailored for dispersive media. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Radiometric description of intensity and coherence in generalized holographic axicon images. , 1996, Applied optics.

[33]  C. M. Gómez-Sarabia,et al.  Ambiguity function analysis of pulse train propagation: applications to temporal Lau filtering. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Shalin B. Mehta,et al.  Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast , 2010 .

[35]  A. Lohmann,et al.  IV: Fractional Transformations in Optics , 1998 .

[36]  C. Sheppard,et al.  Wigner function for nonparaxial wave fields. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[37]  Y. Kano,et al.  A NEW PHASE-SPACE DISTRIBUTION FUNCTION IN THE STATISTICAL THEORY OF THE ELECTROMAGNETIC FIELD , 1965 .

[38]  Lei Tian,et al.  Iterative nonlinear beam propagation using Hamiltonian ray tracing and Wigner distribution function. , 2010, Optics letters.

[39]  Spatial coherence wavelets and phase-space representation of diffraction. , 2008, Applied optics.

[40]  C. Sheppard,et al.  Wigner function for highly convergent three-dimensional wave fields. , 2001, Optics letters.

[41]  D. Dragoman,et al.  Wigner-distribution-function representation of the coupling coefficient. , 1995, Applied optics.

[42]  Roland Winston,et al.  Generalized radiance and measurement , 1995 .

[43]  Se Baek Oh,et al.  Wigner distribution function of volume holograms. , 2009, Optics letters.

[44]  Demetrios N. Christodoulides,et al.  Observation of accelerating Airy beams. , 2007 .

[45]  V. Namias The Fractional Order Fourier Transform and its Application to Quantum Mechanics , 1980 .

[46]  Frank Wyrowski,et al.  Spectral coherence properties of temporally modulated stationary light sources. , 2003, Optics express.

[47]  Michael V Berry,et al.  Nonspreading wave packets , 1979 .

[48]  V. I. Tatarskii,et al.  On the problem of the relationship between coherence theory and the radiation-transfer equation , 1972 .

[49]  B. Kolner Space-time duality and the theory of temporal imaging , 1994 .

[50]  Bahram Javidi,et al.  Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[51]  J. Kirkwood Quantum Statistics of Almost Classical Assemblies , 1933 .

[52]  H. M. Pedersen Exact geometrical theory of free-space radiative energy transfer , 1991 .

[53]  Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics. III. A Generalized Wick Theorem and Multitime Mapping , 1970 .

[54]  Jorge A. Herrera,et al.  Radiometric analysis of diffraction of quasi-homogenous optical fields , 2007 .

[55]  D. Christodoulides,et al.  Accelerating finite energy Airy beams. , 2007, Optics letters.

[56]  Liren Liu,et al.  Analysis of optical systems with extended depth of field using the Wigner distribution function. , 2006, Applied optics.

[57]  M. Alonso,et al.  Generalized radiometry model for the propagation of light within anisotropic and chiral media. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  M. Alonso,et al.  Semigeometrical estimation of Green's functions and wave propagators in optics , 1997 .

[59]  P. Bertrand,et al.  A tomographic approach to Wigner's function , 1987 .

[60]  Kodi Husimi,et al.  Some Formal Properties of the Density Matrix , 1940 .

[61]  M. Alonso,et al.  Radiometry and wide-angle wave fields III: partial coherence. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Yu. A. Kravtsov,et al.  IV Radiative Transfer: New Aspects of the Old Theory , 1996 .

[63]  Albert C. Fannjiang White-Noise and Geometrical Optics Limits of Wigner-Moyal Equation for Wave Beams in Turbulent Media , 2003 .

[64]  Beck,et al.  Complex wave-field reconstruction using phase-space tomography. , 1994, Physical review letters.

[65]  A. Papoulis Ambiguity function in Fourier optics , 1974 .

[66]  Antonia Papandreou-Suppappola,et al.  Quadratic Time-Frequency Representations with Scale Covariance and Generalized Time-Shift Covariance: A Unified Framework for the Affine, Hyperbolic, and Power Classes , 1998, Digit. Signal Process..

[67]  Girish S. Agarwal,et al.  CALCULUS FOR FUNCTIONS OF NONCOMMUTING OPERATORS AND GENERAL PHASE-SPACE METHODS IN QUANTUM MECHANICS. I. MAPPING THEOREMS AND ORDERING OF FUNCTIONS OF NONCOMMUTING OPERATORS. , 1970 .

[68]  J. E. Moyal Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[69]  Ramesh Raskar,et al.  Iterative aperture mask design in phase space using a rank constraint. , 2010, Optics express.

[70]  M. Berry Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[71]  Wigner optics in the metaxial regime , 2003 .

[72]  A. Walther Radiometry and coherence , 1968 .

[73]  S. A. Collins Lens-System Diffraction Integral Written in Terms of Matrix Optics , 1970 .

[74]  A. Lohmann Image rotation, Wigner rotation, and the fractional Fourier transform , 1993 .

[75]  T. Curtright,et al.  Quantum Mechanics in Phase Space , 2011, 1104.5269.

[76]  M. Alonso Radiometry and wide-angle wave fields. II. Coherent fields in three dimensions , 2001 .

[77]  Jonathan C. Petruccelli,et al.  Wigner functions for paraxial and nonparaxial fields , 2009 .

[78]  A. Pons,et al.  Achromatic White-light Self-imaging Phenomenon: An Approach Using the Wigner Distribution Function , 1995 .

[79]  Bahram Javidi,et al.  Sampling in the light of Wigner distribution. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[80]  Alonso Measurement of Helmholtz wave fields , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[81]  A. Lohmann,et al.  Holography in phase space. , 2008, Applied optics.

[82]  A. Starikov,et al.  Effective number of degrees of freedom of partially coherent sources , 1982 .

[83]  Gregory William Forbes,et al.  Wigner functions for Helmholtz wave fields , 1999 .

[84]  P. Rojas,et al.  Optical phase-space-time-frequency tomography. , 2011, Optics express.

[85]  A. Walther Lenses, Wave Optics, and Eikonal Functions* , 1969 .

[86]  D. Dragoman,et al.  Wigner distribution function in nonlinear optics. , 1996, Applied optics.

[87]  M. Lisak,et al.  Relation between different formalisms describing partially incoherent wave propagation in nonlinear optical media , 2003 .

[88]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[89]  M. Alonso,et al.  Generalized radiometry as a tool for the propagation of partially coherent fields , 2002 .

[90]  H. Ozaktas,et al.  Fractional Fourier transforms and their optical implementation. II , 1993 .

[91]  G. Folland,et al.  The uncertainty principle: A mathematical survey , 1997 .

[92]  J. H. Van Vleck,et al.  The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics , 1928 .

[93]  Bahram Javidi,et al.  Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[94]  L. Cohen Generalized Phase-Space Distribution Functions , 1966 .

[95]  W. Cathey,et al.  Extended depth of field through wave-front coding. , 1995, Applied optics.

[96]  Hazak Comment on "Wave field determination using three-dimensional intensity information" , 1992, Physical review letters.

[97]  D. F. McAlister,et al.  Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms. , 1995, Optics letters.

[98]  Colin J. R. Sheppard,et al.  Optical microscopy with extended depth of field , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[99]  Ari T. Friberg Effects Of Coherence In Radiometry , 1982 .

[100]  M. Scully,et al.  Distribution functions in physics: Fundamentals , 1984 .

[101]  S. Oh,et al.  Axial imaging necessitates loss of lateral shift invariance: proof with the Wigner analysis. , 2009, Applied optics.

[102]  E. Sudarshan,et al.  Relation between Quantum and Semiclassical Description of Optical Coherence , 1965 .

[103]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[104]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[105]  Marc Saillard,et al.  Electromagnetic probing for target detection: rejection of surface clutter based on the Wigner distribution. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[106]  C. Dai,et al.  Wigner distribution function of an Airy beam. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[107]  Seongkeun Cho,et al.  Ambiguity function and phase-space tomography for nonparaxial fields. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[108]  J. Garcia-Sucerquia,et al.  Electromagnetic spatial coherence wavelets. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[109]  Leon Cohen,et al.  A Wigner approximation method for wave propagation , 2005 .

[110]  Michael G. Raymer,et al.  Propagation of transverse optical coherence in random multiple-scattering media , 2000 .

[111]  Miguel A. Alonso,et al.  Radiometry and wide-angle wave fields , 2001 .

[112]  Christiane Quesne,et al.  Linear Canonical Transformations and Their Unitary Representations , 1971 .

[113]  J Ojeda-Castañeda,et al.  Bessel annular apodizers: imaging characteristics. , 1987, Applied optics.

[114]  Ana Leonor Rivera,et al.  Holographic information in the Wigner function , 1997 .

[115]  M. Alonso Exact description of free electromagnetic wave fields in terms of rays. , 2003, Optics express.

[116]  M. Alonso,et al.  Diffraction of paraxial partially coherent fields by planar obstacles in the Wigner representation. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[117]  Mj Martin Bastiaans The Wigner distribution function and Hamilton's characteristics of a geometric-optical system , 1979 .

[118]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[119]  J. P. Dahl,et al.  Wigner function for a free particle in two dimensions: A tale of interference , 2010 .

[120]  J. Klauder Continuous‐Representation Theory. I. Postulates of Continuous‐Representation Theory , 1963 .

[121]  J. T. Foley,et al.  Radiometry as a short-wavelength limit of statistical wave theory , 1985, Annual Meeting Optical Society of America.

[122]  August W. Rihaczek,et al.  Signal energy distribution in time and frequency , 1968, IEEE Trans. Inf. Theory.

[123]  D Dragoman,et al.  Beam-propagation method based on the Wigner transform: a new formulation. , 1997, Optics letters.

[124]  Brynmor J. Davis,et al.  Observable coherence theory for statistically periodic fields , 2007 .

[125]  Radiometric model for propagation of coherence. , 1994, Optics letters.

[126]  Nugent Wave field determination using three-dimensional intensity information. , 1992, Physical review letters.

[127]  M. Berry,et al.  Phase-space projection identities for diffraction catastrophes , 1980 .

[128]  D Mendlovic,et al.  Anamorphic fractional Fourier transform: optical implementation and applications. , 1995, Applied optics.

[129]  B. K. Jennings,et al.  Wigner's function and other distribution functions in mock phase spaces , 1984 .

[130]  Mj Martin Bastiaans Transport equations for the Wigner distribution function , 1979 .

[131]  Roland Winston,et al.  Corrections to classical radiometry , 1993, Optics & Photonics.

[132]  Ramesh Raskar,et al.  Partially coherent ambiguity functions for depth-variant point spread function design , 2011 .

[133]  Jonathan C Petruccelli,et al.  Propagation of partially coherent fields through planar dielectric boundaries using angle-impact Wigner functions I. Two dimensions. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[134]  M G Raymer,et al.  Chronocyclic tomography for measuring the amplitude and phase structure of optical pulses. , 1993, Optics letters.

[135]  E. Condon,et al.  Immersion of the Fourier Transform in a Continuous Group of Functional Transformations. , 1937, Proceedings of the National Academy of Sciences of the United States of America.

[136]  A. Lohmann,et al.  RELATIONSHIPS BETWEEN THE RADON-WIGNER AND FRACTIONAL FOURIER TRANSFORMS , 1994 .

[137]  J. E. Thomas,et al.  Measurement of smoothed Wigner phase-space distributions for small-angle scattering in a turbid medium. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[138]  J Ojeda-Castañeda,et al.  Ambiguity function as a design tool for high focal depth. , 1988, Applied optics.

[139]  A. Lohmann,et al.  The ambiguity function as a polar display of the OTF , 1983 .

[140]  Mj Martin Bastiaans Uncertainty principle for partially coherent light , 1983 .

[141]  M. Berry,et al.  Quantum scars of classical closed orbits in phase space , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[142]  Daniela Dragoman,et al.  I: The Wigner Distribution Function in Optics and Optoelectronics , 1997 .

[143]  M. Gutzwiller,et al.  Periodic Orbits and Classical Quantization Conditions , 1971 .

[144]  Ian McNulty,et al.  X-ray imaging: a generalized approach using phase-space tomography. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[145]  Alfredo Luis,et al.  Spatial–angular Mueller matrices , 2006 .

[146]  M. Alonso,et al.  Phase-space distributions for high-frequency fields. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[147]  S. Tamura,et al.  WAVE FIELD DETERMINATION USING TOMOGRAPHY OF THE AMBIGUITY FUNCTION , 1997 .

[148]  Nicole J. Moore,et al.  Two methods for modeling the propagation of the coherence and polarization properties of nonparaxial fields , 2010 .

[149]  G. Agarwal,et al.  The radiance and phase-space representations of the cross-spectral density operator☆ , 1987 .

[150]  Propagation of nonparaxial partially coherent fields across interfaces using generalized radiometry. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[151]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[152]  C. Dorrer,et al.  Complete temporal characterization of short optical pulses by simplified chronocyclic tomography. , 2003, Optics letters.

[153]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[154]  W. Welford Use of Annular Apertures to Increase Focal Depth , 1960 .

[155]  Markus E. Testorf,et al.  Holography and the Wigner function , 2002, SPIE Defense + Commercial Sensing.

[156]  H. Yura,et al.  Closed-form solution for the Wigner phase-space distribution function for diffuse reflection and small-angle scattering in a random medium. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[157]  Markus Testorf Designing Talbot array illuminators with phase-space optics. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[158]  D. Mustard,et al.  The fractional fourier transform and the wigner distribution , 1996, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[159]  F. Gori,et al.  Fresnel transform and sampling theorem , 1981 .

[160]  Joseph H. Eberly,et al.  The time-dependent physical spectrum of light* , 1977 .

[161]  A. Luis Ray picture of polarization and coherence in a Young interferometer. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[162]  Optimal pulses for arbitrary dispersive media , 2011 .

[163]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[164]  Mj Martin Bastiaans The Wigner distribution function applied to optical signals and systems , 1978 .