Nodal-line driven anomalous susceptibility in ZrSiS

We demonstrate a unique approach to test the signature of the nodal-line physics by thermodynamic methods. By measuring magnetic susceptibility in ZrSiS we found an intriguing temperature-driven crossover from dia- to paramagnetic behavior. We show that the anomalous behavior represents a real thermodynamic signature of the underlying nodal-line physics through the means o chemical pressure (isovalent substitution of Zr for Hf), quantum oscillations, and theoretical model ng. The anomalous part of the susceptibility is orbital by nature, and it arises due to the vicinity of the Fermi level to a degeneracy point created by the crossing of two nodal lines. Furthermore, an unexpected Lifshitz topological transition at the degeneracy point is revealed by tuning the Ferm level. The present findings in ZrSiS give a new and attractive starting point for various nodal-lin physics-related phenomena to be tested by thermodynamic methods in other related materials.

[1]  G. Mikitik,et al.  Magnetic susceptibility of crystals with crossing of their band-contact lines , 2021, Low Temperature Physics.

[2]  I. Kokanovi'c,et al.  Quantum oscillations of the magnetic torque in the nodal-line Dirac semimetal ZrSiS , 2021, 2102.02138.

[3]  Carlo Cavazzoni,et al.  Quantum ESPRESSO toward the exascale. , 2020, The Journal of chemical physics.

[4]  D. Smirnov,et al.  Electronic correlations in nodal-line semimetals , 2020 .

[5]  G. Mikitik,et al.  Crossing points of nodal lines in topological semimetals and the Fermi surface of ZrSiS , 2020, Physical Review B.

[6]  C. Müller,et al.  Determination of the Fermi surface and field-induced quasiparticle tunneling around the Dirac nodal loop in ZrSiS , 2020, 2002.04379.

[7]  A. Bostwick,et al.  Light-Induced Renormalization of the Dirac Quasiparticles in the Nodal-Line Semimetal ZrSiSe. , 2019, Physical review letters.

[8]  Z. R. Yang,et al.  Experimental evidence of crystal symmetry protection for the topological nodal line semimetal state in ZrSiS , 2019, Physical Review B.

[9]  M. Dressel,et al.  Magneto-optical probe of the fully gapped Dirac band in ZrSiS , 2019, Physical Review Research.

[10]  T. Qian,et al.  Dirac nodal surfaces and nodal lines in ZrSiS , 2019, Science Advances.

[11]  H. Berger,et al.  Two-Dimensional Conical Dispersion in ZrTe_{5} Evidenced by Optical Spectroscopy. , 2019, Physical review letters.

[12]  Quansheng Wu,et al.  Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line Dirac semimetal , 2019, Physical Review B.

[13]  Y. Vohra,et al.  Possible pressure-induced topological quantum phase transition in the nodal line semimetal ZrSiS , 2019, Physical Review B.

[14]  K. Nomura,et al.  Spin susceptibility of three-dimensional Dirac-Weyl semimetals , 2018, Physical Review B.

[15]  J. Neaton,et al.  Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe 5 , 2018 .

[16]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[17]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[18]  M. Katsnelson,et al.  Unconventional mass enhancement around the Dirac nodal loop in ZrSiS , 2017, Nature Physics.

[19]  C. Felser,et al.  Unusual magnetotransport from Si-square nets in topological semimetal HfSiS , 2016, 1612.05176.

[20]  M. Ogata Orbital Magnetism of Bloch Electrons: III. Application to Graphene , 2016, 1704.02684.

[21]  G. Mikitik,et al.  Magnetic susceptibility of topological nodal semimetals , 2016, 1608.07822.

[22]  Su-Yang Xu,et al.  Observation of Topological Nodal Fermion Semimetal Phase in ZrSiS , 2016, 1604.00720.

[23]  S. Murakami,et al.  Topological Dirac nodal lines and surface charges in fcc alkaline earth metals , 2016, Nature Communications.

[24]  H. Fukuyama,et al.  Orbital Magnetism of Bloch Electrons I. General Formula , 2015, 1602.02449.

[25]  R. Cava,et al.  Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.

[26]  M. Koshino,et al.  Magnetic susceptibility in three-dimensional nodal semimetals , 2015, 1510.02191.

[27]  X. Dai,et al.  Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure , 2015, 1509.01686.

[28]  B. Lotsch,et al.  Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS , 2015, Nature Communications.

[29]  H. Fukuyama,et al.  Transport Properties and Diamagnetism of Dirac Electrons in Bismuth , 2014, 1407.2179.

[30]  M. Morigi,et al.  From dia- to paramagnetic orbital susceptibility of massless fermions. , 2013, Physical review letters.

[31]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  G. Mikitik Step-like anomaly of the magnetic susceptibility in crystals with degenerate electronic energy bands , 2007 .

[33]  C. Berger,et al.  High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy. , 2007, Physical review letters.

[34]  T. Ando,et al.  Diamagnetism in disordered graphene , 2007, 0705.2322.

[35]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[36]  H. Fukuyama Theory of Orbital Magnetism of Bloch Electrons: Coulomb Interactions , 1971 .

[37]  J. W. Mcclure Diamagnetism of Graphite , 1956 .

[38]  G. Mikitik,et al.  Giant anomalies of magnetic susceptibility due to energy band degeneracy in crystals , 2018 .

[39]  W. Tremel,et al.  Square nets of main-group elements in solid-state materials , 1987 .