Nodal-line driven anomalous susceptibility in ZrSiS
暂无分享,去创建一个
M. Kriener | G. Mikitik | I. Kokanovi'c | M. Novak | M. Bosnar | Bruno Gudac | Yuriy V. Sharlai | F. Orbani'c | A. Kimura | B. Gudac
[1] G. Mikitik,et al. Magnetic susceptibility of crystals with crossing of their band-contact lines , 2021, Low Temperature Physics.
[2] I. Kokanovi'c,et al. Quantum oscillations of the magnetic torque in the nodal-line Dirac semimetal ZrSiS , 2021, 2102.02138.
[3] Carlo Cavazzoni,et al. Quantum ESPRESSO toward the exascale. , 2020, The Journal of chemical physics.
[4] D. Smirnov,et al. Electronic correlations in nodal-line semimetals , 2020 .
[5] G. Mikitik,et al. Crossing points of nodal lines in topological semimetals and the Fermi surface of ZrSiS , 2020, Physical Review B.
[6] C. Müller,et al. Determination of the Fermi surface and field-induced quasiparticle tunneling around the Dirac nodal loop in ZrSiS , 2020, 2002.04379.
[7] A. Bostwick,et al. Light-Induced Renormalization of the Dirac Quasiparticles in the Nodal-Line Semimetal ZrSiSe. , 2019, Physical review letters.
[8] Z. R. Yang,et al. Experimental evidence of crystal symmetry protection for the topological nodal line semimetal state in ZrSiS , 2019, Physical Review B.
[9] M. Dressel,et al. Magneto-optical probe of the fully gapped Dirac band in ZrSiS , 2019, Physical Review Research.
[10] T. Qian,et al. Dirac nodal surfaces and nodal lines in ZrSiS , 2019, Science Advances.
[11] H. Berger,et al. Two-Dimensional Conical Dispersion in ZrTe_{5} Evidenced by Optical Spectroscopy. , 2019, Physical review letters.
[12] Quansheng Wu,et al. Highly anisotropic interlayer magnetoresitance in ZrSiS nodal-line Dirac semimetal , 2019, Physical Review B.
[13] Y. Vohra,et al. Possible pressure-induced topological quantum phase transition in the nodal line semimetal ZrSiS , 2019, Physical Review B.
[14] K. Nomura,et al. Spin susceptibility of three-dimensional Dirac-Weyl semimetals , 2018, Physical Review B.
[15] J. Neaton,et al. Thermodynamic signature of Dirac electrons across a possible topological transition in ZrTe 5 , 2018 .
[16] M. J. van Setten,et al. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..
[17] E. J. Mele,et al. Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.
[18] M. Katsnelson,et al. Unconventional mass enhancement around the Dirac nodal loop in ZrSiS , 2017, Nature Physics.
[19] C. Felser,et al. Unusual magnetotransport from Si-square nets in topological semimetal HfSiS , 2016, 1612.05176.
[20] M. Ogata. Orbital Magnetism of Bloch Electrons: III. Application to Graphene , 2016, 1704.02684.
[21] G. Mikitik,et al. Magnetic susceptibility of topological nodal semimetals , 2016, 1608.07822.
[22] Su-Yang Xu,et al. Observation of Topological Nodal Fermion Semimetal Phase in ZrSiS , 2016, 1604.00720.
[23] S. Murakami,et al. Topological Dirac nodal lines and surface charges in fcc alkaline earth metals , 2016, Nature Communications.
[24] H. Fukuyama,et al. Orbital Magnetism of Bloch Electrons I. General Formula , 2015, 1602.02449.
[25] R. Cava,et al. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.
[26] M. Koshino,et al. Magnetic susceptibility in three-dimensional nodal semimetals , 2015, 1510.02191.
[27] X. Dai,et al. Two-dimensional oxide topological insulator with iron-pnictide superconductor LiFeAs structure , 2015, 1509.01686.
[28] B. Lotsch,et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS , 2015, Nature Communications.
[29] H. Fukuyama,et al. Transport Properties and Diamagnetism of Dirac Electrons in Bismuth , 2014, 1407.2179.
[30] M. Morigi,et al. From dia- to paramagnetic orbital susceptibility of massless fermions. , 2013, Physical review letters.
[31] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[32] G. Mikitik. Step-like anomaly of the magnetic susceptibility in crystals with degenerate electronic energy bands , 2007 .
[33] C. Berger,et al. High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy. , 2007, Physical review letters.
[34] T. Ando,et al. Diamagnetism in disordered graphene , 2007, 0705.2322.
[35] Andre K. Geim,et al. The rise of graphene. , 2007, Nature materials.
[36] H. Fukuyama. Theory of Orbital Magnetism of Bloch Electrons: Coulomb Interactions , 1971 .
[37] J. W. Mcclure. Diamagnetism of Graphite , 1956 .
[38] G. Mikitik,et al. Giant anomalies of magnetic susceptibility due to energy band degeneracy in crystals , 2018 .
[39] W. Tremel,et al. Square nets of main-group elements in solid-state materials , 1987 .