Diagnosing Changes in An Ontology Stream: A DL Reasoning Approach

Recently, ontology stream reasoning has been introduced as a multidisciplinary approach, merging synergies from Artificial Intelligence, Database and World-Wide-Web to reason on semantics-augmented data streams, thus a way to answering questions on real time events. However existing approaches do not consider stream change diagnosis i.e., identification of the nature and cause of changes, where explaining the logical connection of knowledge and inferring insight on timechanging events are the main challenges. We exploit the Description Logics (DL)-based semantics of streams to tackle these challenges. Based on an analysis of stream behavior through change and inconsistency over DL axioms, we tackled change diagnosis by determining and constructing a comprehensive view on potential causes of inconsistencies. We report a large-scale evaluation of our approach in the context of live stream data from Dublin City Council.

[1]  Ralf Küsters Non-Standard Inferences in Description Logics , 2001, Lecture Notes in Computer Science.

[2]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[3]  Ian Horrocks,et al.  Ontology Reasoning in the SHOQ(D) Description Logic , 2001, IJCAI.

[4]  Nicola Fanizzi,et al.  Conceptual Clustering and Its Application to Concept Drift and Novelty Detection , 2008, ESWC.

[5]  Alain Biem,et al.  IBM infosphere streams for scalable, real-time, intelligent transportation services , 2010, SIGMOD Conference.

[6]  Jeff Z. Pan,et al.  Optimising ontology stream reasoning with truth maintenance system , 2011, CIKM '11.

[7]  Charu C. Aggarwal,et al.  A framework for diagnosing changes in evolving data streams , 2003, SIGMOD '03.

[8]  Daniele Braga,et al.  C-SPARQL: SPARQL for continuous querying , 2009, WWW '09.

[9]  Dieter Fensel,et al.  It's a Streaming World! Reasoning upon Rapidly Changing Information , 2009, IEEE Intelligent Systems.

[10]  V. S. Subrahmanian,et al.  Maintaining views incrementally , 1993, SIGMOD Conference.

[11]  Steffen Staab,et al.  Incrementally Maintaining Materializations of Ontologies Stored in Logic Databases , 2005, J. Data Semant..

[12]  James D. Myers,et al.  Semantic Management of Streaming Data , 2009, SSN.

[13]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[14]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[15]  Amit P. Sheth,et al.  Semantic Sensor Web , 2008, IEEE Internet Computing.

[16]  Amit P. Sheth,et al.  Computing for human experience: Semantics-empowered sensors, services, and social computing on the ubiquitous Web , 2010, IEEE Internet Computing.

[17]  Sören Auer,et al.  OntoWiki: A Tool for Social, Semantic Collaboration , 2006, CKC.

[18]  Jennifer Widom,et al.  Continuous queries over data streams , 2001, SGMD.

[19]  Heiner Stuckenschmidt,et al.  Reasoning with Multi-version Ontologies: A Temporal Logic Approach , 2005, SEMWEB.

[20]  Franz Baader,et al.  Pushing the EL Envelope Further , 2008, OWLED.

[21]  Daniele Braga,et al.  Incremental Reasoning on Streams and Rich Background Knowledge , 2010, ESWC.

[22]  Mark A. Musen,et al.  Promptdiff: a fixed-point algorithm for comparing ontology versions , 2002, AAAI/IAAI.

[23]  Charu C. Aggarwal A Framework for Change Diagnosis of Data Streams. , 2003, SIGMOD 2003.

[24]  Ralf Küsters,et al.  Rewriting Concepts Using Terminologies , 2000, KR.

[25]  Shai Ben-David,et al.  Detecting Change in Data Streams , 2004, VLDB.

[26]  Ian Horrocks,et al.  A Software Framework for Matchmaking Based on Semantic Web Technology , 2004, Int. J. Electron. Commer..

[27]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.