Applicability of DFT + U to U metal and U-Zr alloy

In the Letter [J. Nucl. Mater. 444, 356 (2014)] and Comment [Phys Rev B 90, 157101 (2014)], Soderlind et al. argue that 1) DFT based on GGA already models U metal and U-Zr alloy accurately, and 2) DFT + U models them worse than DFT according to results they calculate or select from our recent study [Phys. Rev. B 88, 235128 (2013)]. Here we demonstrate in response to 1) that previously neglected and more recent experimental data indicate that DFT, even when implemented in all-electron methods, does not model the bulk modulus and elastic constants of {\alpha}U very accurately. Furthermore, Soderlind et al.'s claim that deficiency exists in our PAW calculation is unfounded and hence our results, including those that show DFT results compare unfavorably with experimental/computational references, are valid. We also demonstrate in response to 2) that Soderlind et al.'s arguments are unsound for three reasons. First, they focus on just the BCC phases {\gamma}U and {\gamma}(U,Zr)--which at the ab initio modeling temperature of 0 K are unstable and hence difficult to model and benchmar--as primary subjects of examination; however it is results for the stable phases mostly neglected by Soderlind et al. that are the primary evidence of our argument. Second, they make unfounded generalization of DFT + U results at selected U eff values to argue that DFT + U in general gives wrong or unsatisfactory results. Third, some key points in Soderlind et al.'s criticisms of DFT + U are not well supported, including the claims that for {\gamma}(U,Zr) DFT + U at Ueff = 1.24 eV gives positive deviations from linear dependence of composition that are unprecedentedly large and partially negative enthalpies of mixing that are inconsistent with the existence of miscibility gap in the experimental phase diagram. We therefore maintain our conclusion that DFT + U can be of value for modeling U and U-Zr.

[1]  Alexander P. Moore,et al.  Atomistic modeling of high temperature uranium–zirconium alloy structure and thermodynamics , 2015 .

[2]  J. Bouchet,et al.  Thermal evolution of vibrational properties ofα-U , 2015 .

[3]  A. van de Walle,et al.  The free energy of mechanically unstable phases , 2015, Nature Communications.

[4]  P. Turchi,et al.  Comment on "Correlation and relativistic effects in U metal and U-Zr alloy: Validation of ab initio approaches" , 2014 .

[5]  V. Van Speybroeck,et al.  Error Estimates for Solid-State Density-Functional Theory Predictions: An Overview by Means of the Ground-State Elemental Crystals , 2012, 1204.2733.

[6]  Wei Xiong,et al.  Correlation and relativistic effects in U metal and U-Zr alloy: Validation of ab initio approaches , 2013 .

[7]  Wei Xiong,et al.  Thermodynamic modeling of the U–Zr system – A revisit , 2013 .

[8]  J. Bouchet,et al.  Refinement of the equation of state ofα-uranium , 2013 .

[9]  B. Sadigh,et al.  Electron correlation and relativity of the 5f electrons in the U-Zr alloy system , 2013 .

[10]  M. Baskes,et al.  First principles calculations of the structure and elastic constants of α, β and γ uranium , 2013 .

[11]  T. Björkman,et al.  High-temperature phonon stabilization of γ -uranium from relativistic first-principles theory , 2012 .

[12]  J. Bouchet,et al.  Elastic properties of the light actinides at high pressure , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  A. Lawson,et al.  Coupled temperature dependences of volume and compressibility , 2011 .

[14]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[15]  E. Lewars Density Functional Calculations , 2011 .

[16]  B. Meredig,et al.  Method for locating low-energy solutions within DFT+U , 2010 .

[17]  N. Prabhu,et al.  On the formation mechanism of UZr2 phase , 2010 .

[18]  Zi-kui Liu,et al.  First-principles calculations of pure elements: Equations of state and elastic stiffness constants , 2010 .

[19]  M. Kurata Thermodynamic database on U-Pu-Zr-Np-Am-Fe alloy system I — Re-evaluation of U-Pu-Zr alloy system - , 2010 .

[20]  Bernard Amadon,et al.  DFT+U calculations of the ground state and metastable states of uranium dioxide , 2009 .

[21]  V. Ozoliņš,et al.  First-principles calculations of free energies of unstable phases: the case of fcc W. , 2009, Physical review letters.

[22]  W. Pickett,et al.  Anisotropy and Magnetism in the LSDA+U Method , 2008, 0808.1706.

[23]  C. Marianetti,et al.  Electronic coherence in δ-Pu: A dynamical mean-field theory study , 2008 .

[24]  P. Turchi,et al.  Density-functional study of the U-Zr system , 2008 .

[25]  C. Marianetti,et al.  Electronic structure calculations with dynamical mean-field theory , 2005, cond-mat/0511085.

[26]  V. Drchal,et al.  Coulomb-U and magnetic-moment collapse in δ-Pu , 2005, cond-mat/0502233.

[27]  G. Lander,et al.  Absence of Magnetic Moments in Plutonium , 2004, cond-mat/0410634.

[28]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[29]  B. Sadigh,et al.  Density-functional calculations of alpha, beta, gamma, delta, delta', and epsilon plutonium. , 2004, Physical review letters.

[30]  B. Sadigh,et al.  Density-functional calculations of α, β, γ, δ, δ', and ε plutonium , 2004 .

[31]  B. Cheynet,et al.  Progress in the thermodynamic modelling of the O–U–Zr ternary system , 2004 .

[32]  J. Wills,et al.  Structural behavior of α-uranium with pressures to 100 GPa , 2003 .

[33]  I. I. Mazin,et al.  Correlated metals and the LDA+U method , 2002, cond-mat/0206548.

[34]  P. Söderlind First-principles elastic and structural properties of uranium metal , 2002 .

[35]  M. Pénicaud Calculated structural stabilities of U, Np, Pu and Am; new high-pressure phases for Am and Pu , 2002 .

[36]  Dan Thoma,et al.  Low-temperature specific heat and critical magnetic field of α-uranium single crystals , 2001 .

[37]  David J. Singh,et al.  Theoretical atomic volumes of the light actinides , 2000 .

[38]  B. I. Bennett,et al.  Melting of the light actinides , 2000 .

[39]  Savrasov,et al.  Ground state theory of delta-Pu , 1999, Physical review letters.

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  Y. Hoshino,et al.  Mechanical and thermal properties of uranium intermetallic compounds , 1998 .

[42]  H. Skriver,et al.  Local density approximation versus generalized gradient approximation:: full charge density study of the atomic volume of the light actinides , 1998 .

[43]  H. Cynn,et al.  Phase diagram of uranium at high pressures and temperatures , 1998 .

[44]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[45]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  M Akabori,et al.  The lattice stability and structure of delta -UZr2 at elevated temperatures , 1995 .

[49]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[50]  Johansson,et al.  Electronic properties of f-electron metals using the generalized gradient approximation. , 1994, Physical review. B, Condensed matter.

[51]  G. Lander,et al.  The solid-state properties of uranium A historical perspective and review , 1994 .

[52]  W. Petry,et al.  The temperature dependence of the lattice parameters of pure BCC Zr and BCC Zr-2 at.%Co , 1992 .

[53]  N. Ashcroft,et al.  Vegard's law. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[54]  Johansson,et al.  Relativistic effects on the thermal expansion of the actinide elements. , 1990, Physical review. B, Condensed matter.

[55]  Y. Wu,et al.  Static EOS of uranium to 100 GPa pressure , 1990 .

[56]  D. Peterson,et al.  The U-Zr (Uranium-Zirconium) system , 1989 .

[57]  S. Dabos,et al.  Bulk modulus and P- V relationship up to 52 GPa of neptunium metal at room temperature , 1987 .

[58]  J. Huber,et al.  The superconductivity of BCC UZr alloys , 1985 .

[59]  J. Akella,et al.  Static high pressure diamond-anvil studies on uranium to 50 GPa , 1985 .

[60]  M. Brooks Relativistic corrections to the atomic volumes of the actinide metals , 1983 .

[61]  R. E. Watson,et al.  Coulomb term U and 5f electron excitation energies for the metals actinium to berkelium | NIST , 1976 .

[62]  J. Donohue The structures of the elements , 1974 .

[63]  H. Einspahr,et al.  The structure of -uranium , 1971 .

[64]  E. Fisher,et al.  ELASTIC MODULI AND PHASE TRANSITION IN URANIUM AT T < 43$sup 0$K. , 1968 .

[65]  E. Smirnov,et al.  Thermodynamic properties of the γ-phase in the uranium-zirconium system , 1966 .

[66]  E. Fisher Temperature dependence of the elastic moduli in alpha uranium single crystals, part iv (298° to 923° K) , 1966 .

[67]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[68]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[69]  K. Gschneidner Physical Properties and Interrelationships of Metallic and Semimetallic Elements , 1964 .

[70]  H. J. Mcskimin,et al.  LOW-TEMPERATURE PHASE TRANSITION IN ALPHA URANIUM , 1961 .

[71]  H. J. Mcskimin,et al.  TEMPERATURE DEPENDENCE OF THE ADIABATIC ELASTIC MODULI OF SINGLE-CRYSTAL ALPHA URANIUM , 1960 .

[72]  H. J. Mcskimin,et al.  Adiabatic Elastic Moduli of Single Crystal Alpha‐Uranium , 1958 .

[73]  E. Zen Validity of “vegard's law” , 1956 .