Significance of image representation for face verification

In this paper we discuss the significance of representation of images for face verification. We consider three different representations, namely, edge gradient, edge orientation and potential field derived from the edge gradient. These representations are examined in the context of face verification using a specific type of correlation filter, called the minimum average correlation energy (MACE) filter. The different representations are derived using one-dimensional (1-D) processing of image. The 1-D processing provides multiple partial evidences for a given face image, one evidence for each direction of the 1-D processing. Separate MACE filters are used for deriving each partial evidence. We propose a method to combine the partial evidences obtained for each representation using an auto-associative neural network (AANN) model, to arrive at a decision for face verification. Results show that the performance of the system using potential field representation is better than that using the edge gradient representation or the edge orientation representation. Also, the potential field representation derived from the edge gradient is observed to be less sensitive to variation in illumination compared to the gray level representation of images.

[1]  D. Casasent,et al.  Minimum average correlation energy filters. , 1987, Applied optics.

[2]  V. Bruce,et al.  Human Face Perception and Identification , 1998 .

[3]  B. V. K. Vijaya Kumar,et al.  Spatial frequency domain image processing for biometric recognition , 2002, Proceedings. International Conference on Image Processing.

[4]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Roberto Brunelli,et al.  Face Recognition: Features Versus Templates , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Muhittin Gökmen,et al.  Eigenhill vs. eigenface and eigenedge , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[7]  B. V. K. Vijaya Kumar,et al.  Illumination Normalization Using Logarithm Transforms for Face Authentication , 2003, AVBPA.

[8]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[9]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[10]  Yajie Tian,et al.  Handbook of face recognition , 2003 .

[11]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[12]  T. Porsching,et al.  Numerical Analysis of Partial Differential Equations , 1990 .

[13]  Rama Chellappa,et al.  A feature based approach to face recognition , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[15]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[16]  B V Kumar,et al.  Tutorial survey of composite filter designs for optical correlators. , 1992, Applied optics.

[17]  Josef Kittler,et al.  Audio- and Video-Based Biometric Person Authentication, 5th International Conference, AVBPA 2005, Hilton Rye Town, NY, USA, July 20-22, 2005, Proceedings , 2005, AVBPA.

[18]  Robert J. Baron,et al.  Mechanisms of Human Facial Recognition , 1981, Int. J. Man Mach. Stud..

[19]  B. V. Vijaya Kumar,et al.  Minimum-variance synthetic discriminant functions , 1986 .

[20]  B. V. K. Vijaya Kumar,et al.  Efficient design of advanced correlation filters for robust distortion-tolerant face recognition , 2003, Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 2003..

[21]  Yongsheng Gao,et al.  Face Recognition Using Line Edge Map , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  R. Courant,et al.  Methods of Mathematical Physics, Vol. I , 1954 .

[23]  Anastasios Tefas,et al.  Using Support Vector Machines to Enhance the Performance of Elastic Graph Matching for Frontal Face Authentication , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Kishore Prahallad,et al.  AANN: an alternative to GMM for pattern recognition , 2002, Neural Networks.

[25]  Jerry L. Prince,et al.  Gradient vector flow: a new external force for snakes , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[27]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[28]  Muhittin Gökmen,et al.  Eigenhill vs. eigenface and eigenedge , 2001, Pattern Recognit..

[29]  D Casasent,et al.  Multivariant technique for multiclass pattern recognition. , 1980, Applied optics.