Monte Carlo simulation of gamma-ray response of BaF2 and CaF2

We have employed a Monte Carlo (MC) method to study intrinsic properties of two alkaline-earth halides, namely, BaF2 and CaF2, relevant to their use as radiation detector materials. The MC method follows the fate of individual electron-hole (e-h) pairs and thus allows for a detailed description of the microscopic structure of ionization tracks created by incident γ-ray radiation. The properties of interest include the mean energy required to create an e-h pair, W, Fano factor, F, the maximum theoretical light yield, and the spatial distribution of e-h pairs resulting from γ-ray excitation. Although W and F vary with incident photon energy at low energies, they tend to constant values at energies higher than 1 keV. W is determined to be 18.9 and 19.8 eV for BaF2 and CaF2, respectively, in agreement with published data. The e-h pair spatial distributions exhibit a linear distribution along the fast electron tracks with high e-h pair densities at the end of the tracks. Most e-h pairs are created by interband...

[1]  P. Dorenbos Fundamental Limitations in the Performance of ${\rm Ce}^{3+}$ –, ${\rm Pr}^{3+}$ –, and ${\rm Eu}^{2+}$ –Activated Scintillators , 2010 .

[2]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[3]  Anthony J. Peurrung,et al.  Energy nonlinearity in radiation detection materials: Causes and consequences , 2007 .

[4]  S. Kerisit,et al.  Computer simulation of the light yield nonlinearity of inorganic scintillators , 2009 .

[5]  Marvin J. Weber,et al.  Inorganic scintillators: today and tomorrow , 2002 .

[6]  Stephen L. Adler,et al.  Quantum theory of the dielectric constant in real solids. , 1962 .

[7]  L. Campbell,et al.  Excited State Electronic Properties of Sodium Iodide and Cesium Iodide , 2013 .

[8]  D. R. Penn,et al.  Electron mean-free-path calculations using a model dielectric function. , 1987, Physical review. B, Condensed matter.

[9]  T. Everhart,et al.  Role of plasmon decay in secondary electron emission in the nearly-free-electron metals. Application to aluminum , 1977 .

[10]  D. J. Robbins,et al.  On Predicting the Maximum Efficiency of Phosphor Systems Excited by Ionizing Radiation , 1980 .

[11]  YuLong Xie,et al.  Computer simulation of electron thermalization in CsI and CsI(Tl) , 2011 .

[12]  Arnold Burger,et al.  Strontium and barium iodide high light yield scintillators , 2008 .

[13]  A. Lempicki,et al.  Efficiency of electron-hole pair production in scintillators , 1996 .

[14]  A. Owens,et al.  Picosecond dynamics of hot carriers and phonons and scintillator non-proportionality , 2012, 1206.1780.

[15]  Fei Gao,et al.  Kinetic Monte Carlo simulations of excitation density dependent scintillation in CsI and CsI(Tl) , 2013 .

[16]  A. Vasil’ev,et al.  Recombination of Correlated Electron–Hole Pairs With Account of Hot Capture With Emission of Optical Phonons , 2012, IEEE Transactions on Nuclear Science.

[17]  Andrzej J. Wojtowicz,et al.  Fundamental limits of scintillator performance , 1993 .

[18]  C. W. Nestor,et al.  Calculation of Electron Shake-Off Probabilities as the Result of X-Ray Photoionization of the Rare Gases , 1973 .

[19]  Amos Breskin,et al.  Monte Carlo simulations of secondary electron emission from CsI, induced by 1–10 keV x rays and electrons , 1992 .

[20]  P. Dorenbos,et al.  Absolute light yield measurements on BaF/sub 2/ crystals and the quantum efficiency of several photomultiplier tubes , 1992 .

[21]  A. Wojtowicz,et al.  Fundamental limitations of scintillators , 1994 .

[22]  YuLong Xie,et al.  Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators , 2012 .

[23]  Fei Gao,et al.  Electron-Hole Pairs Created by Photons and Intrinsic Properties in Detector Materials , 2008, IEEE Transactions on Nuclear Science.

[24]  Amos Breskin,et al.  Spatial characteristics of electron‐ and photon‐induced secondary electron cascades in CsI , 1994 .

[25]  U. Fano,et al.  Penetration of protons, alpha particles, and mesons , 1963 .

[26]  Claude Amsler,et al.  Temperature dependence of pure CsI: scintillation light yield and decay time , 2002 .

[27]  F. Rohrlich,et al.  Positron-Electron Differences in Energy Loss and Multiple Scattering , 1954 .

[28]  Kiwamu Saito,et al.  Average Energies Required per Scintillation Photon and Energy Resolutions in NaI(Tl) and CsI(Tl) Crystals for Gamma Rays , 2006 .

[29]  T. Boutboul,et al.  An improved model for ultraviolet- and x-ray-induced electron emission from CsI , 1999 .

[30]  Nathan Wiser,et al.  Dielectric Constant with Local Field Effects Included , 1963 .

[31]  J. H. Hubbell,et al.  EPDL97: the evaluated photo data library `97 version , 1997 .

[32]  F. Salvat,et al.  A simple model for electron scattering: inelastic collisions , 1985 .

[33]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[34]  M. Moszynski,et al.  Application of large area avalanche photodiodes to study scintillators at liquid nitrogen temperatures , 2003 .

[35]  P. Dorenbos,et al.  Measuring the absolute light yield of scintillators , 2005 .

[36]  Cross sections for K-shell ionisation by electron impact , 1990 .

[37]  M. Dapor Elastic scattering of electrons and positrons by atoms: differential and transport cross section calculations , 1995 .

[38]  M. Moszynski,et al.  Energy resolution and non-proportionality of the light yield of pure CsI at liquid nitrogen temperatures , 2005 .

[39]  YuLong Xie,et al.  Yield, variance and spatial distribution of electron-hole pairs in CsI , 2011 .

[40]  A. Wojtowicz,et al.  Scintillation light yield of BaF2:Ce , 2009 .

[41]  C. Møller Zur Theorie des Durchgangs schneller Elektronen durch Materie , 1932 .

[42]  Energy and length scales in scintillator nonproportionality , 2007 .

[43]  P. Dorenbos,et al.  Advances in Yield Calibration of Scintillators , 2008, IEEE Transactions on Nuclear Science.

[44]  A. J. Peurrung,et al.  Gamma-ray interaction in Ge: A Monte Carlo simulation , 2007 .

[45]  F. Salvat,et al.  Monte Carlo simulation of kilovolt electron transport in solids , 1990 .

[46]  R. Ribberfors,et al.  X-ray incoherent scattering total cross sections and energy-absorption cross sections by means of simple calculation routines , 1983 .

[47]  Edward L. Garwin,et al.  Electron‐Phonon Interaction in Alkali Halides. I. The Transport of Secondary Electrons with Energies between 0.25 and 7.5 eV , 1969 .

[48]  W. W. Moses,et al.  Nonproportionality of Scintillator Detectors: Theory and Experiment. II , 2009, IEEE Transactions on Nuclear Science.

[49]  Alan A. Wells,et al.  The X-ray energy response of silicon Part A. Theory , 1994 .