A Hybrid Lagrangian/Eulerian Collocated Advection and Projection Method for Fluid Simulation

We present a hybrid particle/grid approach for simulating incompressible fluids on collocated velocity grids. We interchangeably use particle and grid representations of transported quantities to balance efficiency and accuracy. A novel Backward Semi-Lagrangian method is derived to improve accuracy of grid based advection. Our approach utilizes the implicit formula associated with solutions of Burgers' equation. We solve this equation using Newton's method enabled by $C^1$ continuous grid interpolation. We enforce incompressibility over collocated, rather than staggered grids. Our projection technique is variational and designed for B-spline interpolation over regular grids where multiquadratic interpolation is used for velocity and multilinear interpolation for pressure. Despite our use of regular grids, we extend the variational technique to allow for cut-cell definition of irregular flow domains for both Dirichlet and free surface boundary conditions.

[1]  Rahul Narain,et al.  A Second-Order Advection-Reflection Solver , 2019, PACMCGIT.

[2]  Chenfanfu Jiang,et al.  Efficient and conservative fluids using bidirectional mapping , 2019, ACM Trans. Graph..

[3]  Denis Demidov,et al.  AMGCL: An Efficient, Flexible, and Extensible Algebraic Multigrid Implementation , 2018, Lobachevskii Journal of Mathematics.

[4]  Philip Levis,et al.  Distributing and Load Balancing Sparse Fluid Simulations , 2018, Comput. Graph. Forum.

[5]  Takeo Igarashi,et al.  Spatially adaptive long-term semi-Lagrangian method for accurate velocity advection , 2018, Computational Visual Media.

[6]  Rahul Narain,et al.  An advection-reflection solver for detail-preserving fluid simulation , 2018, ACM Trans. Graph..

[7]  Takeo Igarashi,et al.  Extended Narrow Band FLIP for Liquid Simulations , 2018, Comput. Graph. Forum.

[8]  Takeo Igarashi,et al.  A long-term semi-lagrangian method for accurate velocity advection , 2017, SIGGRAPH Asia Technical Briefs.

[9]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[10]  Jan Bender,et al.  Robust eXtended finite elements for complex cutting of deformables , 2017, ACM Trans. Graph..

[11]  Fan Zhang,et al.  Incompressible material point method for free surface flow , 2017, J. Comput. Phys..

[12]  Peter Schröder,et al.  Schrödinger's smoke , 2016, ACM Trans. Graph..

[13]  Rüdiger Westermann,et al.  Narrow Band FLIP for Liquid Simulations , 2016, Comput. Graph. Forum.

[14]  Robert Bridson,et al.  Restoring the missing vorticity in advection-projection fluid solvers , 2015, ACM Trans. Graph..

[15]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[16]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[17]  Nuttapong Chentanez,et al.  Coupling 3D Eulerian, Heightfield and Particle Methods for Interactive Simulation of Large Scale Liquid Phenomena , 2014, IEEE Transactions on Visualization and Computer Graphics.

[18]  Alexey Stomakhin,et al.  A second order virtual node algorithm for Navier-Stokes flow problems with interfacial forces and discontinuous material properties , 2014, J. Comput. Phys..

[19]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[20]  M. Teschner,et al.  Unified spray, foam and air bubbles for particle-based fluids , 2012, The Visual Computer.

[21]  Robert Bridson,et al.  MultiFLIP for energetic two-phase fluid simulation , 2012, TOGS.

[22]  Fehmi Cirak,et al.  Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .

[23]  Andrea Bressan,et al.  Isogeometric regular discretization for the Stokes problem , 2011 .

[24]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[25]  Anita T. Layton,et al.  New numerical methods for Burgers' equation based on semi-Lagrangian and modified equation approaches , 2010 .

[26]  Keenan Crane,et al.  Energy-preserving integrators for fluid animation , 2009, ACM Trans. Graph..

[27]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[28]  Robert Bridson,et al.  Fluid Simulation for Computer Graphics , 2008 .

[29]  Robert Bridson,et al.  Accurate viscous free surfaces for buckling, coiling, and rotating liquids , 2008, SCA '08.

[30]  Jonathan M. Cohen,et al.  Low viscosity flow simulations for animation , 2008, SCA '08.

[31]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[32]  Hyeong-Seok Ko,et al.  A Semi‐Lagrangian CIP Fluid Solver without Dimensional Splitting , 2008, Comput. Graph. Forum.

[33]  Hyeong-Seok Ko,et al.  Derivative Particles for Simulating Detailed Movements of Fluids , 2007, IEEE Transactions on Visualization and Computer Graphics.

[34]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.

[35]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[36]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[37]  Alexis Angelidis,et al.  Simulation of smoke based on vortex filament primitives , 2005, SCA '05.

[38]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[39]  Andrew Selle,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[40]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[41]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[42]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[43]  O. Botella,et al.  On a collocation B-spline method for the solution of the Navier-Stokes equations , 2002 .

[44]  George Em Karniadakis,et al.  A semi-Lagrangian high-order method for Navier-Stokes equations , 2001 .

[45]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[46]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[47]  T. Yabe,et al.  The constrained interpolation profile method for multiphase analysis , 2001 .

[48]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[49]  S. Cohn,et al.  The Use of Spline Interpolation in Semi-Lagrangian Transport Models , 1998 .

[50]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[51]  E. Kim,et al.  A mixed galerkin method for computing the flow between eccentric rotating cylinders , 1998 .

[52]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[53]  Parviz Moin,et al.  B-Spline Method and Zonal Grids for Simulations of Complex Turbulent Flows , 1997 .

[54]  Dimitris N. Metaxas,et al.  Realistic Animation of Liquids , 1996, Graphics Interface.

[55]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[56]  J. Steinhoff,et al.  Modification of the Euler equations for ‘‘vorticity confinement’’: Application to the computation of interacting vortex rings , 1994 .

[57]  Ching-Yuang Huang Semi-Lagrangian Advection Schemes and Eulerian WKL Algorithms , 1994 .

[58]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[59]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[60]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[61]  R. T. Williams,et al.  Semi-Lagrangian Solutions to the Inviscid Burgers Equation , 1990 .

[62]  T. Hughes The Finite Element Method , 1987 .

[63]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[64]  Janusz A. Pudykiewicz,et al.  Some properties and comparative performance of the semi‐Lagrangian method of Robert in the solution of the advection‐diffusion equation , 1984 .

[65]  J. Bates,et al.  Multiply-Upstream, Semi-Lagrangian Advective Schemes: Analysis and Application to a Multi-Level Primitive Equation Model , 1982 .

[66]  André Robert,et al.  A stable numerical integration scheme for the primitive meteorological equations , 1981 .

[67]  J. S. Sawyer A semi-Lagrangian method of solving the vorticity advection equation , 1963 .

[68]  Francis H Harlow,et al.  The particle-in-cell method for numerical solution of problems in fluid dynamics , 1962 .

[69]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[70]  R. Bridson,et al.  Supplemental to : “ Variational Stokes : A Unified Pressure-Viscosity Solver for Accurate Viscous Liquids " , 2017 .

[71]  Jerry Tessendorf,et al.  The Characteristic Map for Fast and Efficient VFX Fluid Simulations , 2011 .

[72]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[73]  Ignacio Llamas,et al.  Advections with Significantly Reduced Dissipation and Diffusion , 2007, IEEE Transactions on Visualization and Computer Graphics.

[74]  R. Fedkiw,et al.  USING THE PARTICLE LEVEL SET METHOD AND A SECOND ORDER ACCURATE PRESSURE BOUNDARY CONDITION FOR FREE SURFACE FLOWS , 2003 .

[75]  B. Barsky,et al.  Quadratic B-spline curve interpolation☆ , 2001 .

[76]  L. Evans,et al.  Partial Differential Equations , 2000 .

[77]  P. Makar,et al.  Basis-Spline Interpolation on the Sphere: Applications to Semi-Lagrangian Advection , 1996 .

[78]  David R. Kincaid,et al.  Numerical mathematics and computing , 1980 .

[79]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[80]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[81]  R. Bridson,et al.  Author manuscript, published in "ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007) (2007)" A Fast Variational Framework for Accurate Solid-Fluid Coupling , 2022 .

[82]  Robert M. Kirby,et al.  International Journal for Numerical Methods in Engineering Analysis and Reduction of Quadrature Errors in the Material Point Method (mpm) , 2022 .