Structured Bayesian Gaussian process latent variable model: applications to data-driven dimensionality reduction and high-dimensional inversion

Abstract We introduce a methodology for nonlinear inverse problems using a variational Bayesian approach where the unknown quantity is a spatial field. A structured Bayesian Gaussian process latent variable model is used both to construct a low-dimensional generative model of the sample-based stochastic prior as well as a surrogate for the forward evaluation. Its Bayesian formulation captures epistemic uncertainty introduced by the limited number of input and output examples, automatically selects an appropriate dimensionality for the learned latent representation of the data, and rigorously propagates the uncertainty of the data-driven dimensionality reduction of the stochastic space through the forward model surrogate. The structured Gaussian process model explicitly leverages spatial information for an informative generative prior to improve sample efficiency while achieving computational tractability through Kronecker product decompositions of the relevant kernel matrices. Importantly, the Bayesian inversion is carried out by solving a variational optimization problem, replacing traditional computationally-expensive Monte Carlo sampling. The methodology is demonstrated on an elliptic PDE and is shown to return well-calibrated posteriors and is tractable with latent spaces with over 100 dimensions.

[1]  Ilias Bilionis,et al.  Multi-output separable Gaussian process: Towards an efficient, fully Bayesian paradigm for uncertainty quantification , 2013, J. Comput. Phys..

[2]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[3]  Neil D. Lawrence,et al.  Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes , 2017, NIPS.

[4]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[5]  Baskar Ganapathysubramanian,et al.  A non-linear dimension reduction methodology for generating data-driven stochastic input models , 2008, J. Comput. Phys..

[6]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[7]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[8]  Daniel M. Tartakovsky,et al.  Multivariate sensitivity analysis of saturated flow through simulated highly heterogeneous groundwater aquifers , 2005, J. Comput. Phys..

[9]  Mark A. Girolami,et al.  A Bayesian approach to multiscale inverse problems with on-the-fly scale determination , 2016, J. Comput. Phys..

[10]  Andrew Gordon Wilson,et al.  Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.

[11]  N. Zabaras,et al.  Solution of inverse problems with limited forward solver evaluations: a Bayesian perspective , 2013 .

[12]  Richard E. Turner Statistical models for natural sounds , 2010 .

[13]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[14]  Julien Cornebise,et al.  Weight Uncertainty in Neural Networks , 2015, ArXiv.

[15]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[16]  Andreas C. Damianou,et al.  Deep Gaussian processes and variational propagation of uncertainty , 2015 .

[17]  Neil D. Lawrence,et al.  Gaussian Process Models with Parallelization and GPU acceleration , 2014, ArXiv.

[18]  Daniel M. Tartakovsky,et al.  Mean Flow in composite porous media , 2000 .

[19]  Neil D. Lawrence,et al.  Bayesian Gaussian Process Latent Variable Model , 2010, AISTATS.

[20]  H. Haario,et al.  Markov chain Monte Carlo methods for high dimensional inversion in remote sensing , 2004 .

[21]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[22]  Carl E. Rasmussen,et al.  Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models , 2014, NIPS.

[23]  Neil D. Lawrence,et al.  Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.

[24]  James Martin,et al.  A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..

[25]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[26]  Daniel M. Tartakovsky,et al.  Groundwater flow in heterogeneous composite aquifers , 2002 .

[27]  Ilias Bilionis,et al.  Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantification , 2018, J. Comput. Phys..

[28]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[29]  Neil D. Lawrence,et al.  Deep Gaussian Processes , 2012, AISTATS.

[30]  Joe Brewer,et al.  Kronecker products and matrix calculus in system theory , 1978 .

[31]  Daniel M. Tartakovsky,et al.  Moment Differential Equations for Flow in Highly Heterogeneous Porous Media , 2003 .

[32]  Miguel Lázaro-Gredilla,et al.  Bayesian Warped Gaussian Processes , 2012, NIPS.

[33]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[34]  Marc Peter Deisenroth,et al.  Doubly Stochastic Variational Inference for Deep Gaussian Processes , 2017, NIPS.

[35]  James O. Berger,et al.  Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems , 2003 .

[36]  Geoff K. Nicholls,et al.  Statistical inversion of South Atlantic circulation in an abyssal neutral density layer , 2005 .

[37]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[38]  John P. Cunningham,et al.  Fast Gaussian process methods for point process intensity estimation , 2008, ICML '08.

[39]  Knut-Andreas Lie,et al.  Modelling of Multiscale Structures in Flow Simulations for Petroleum Reservoirs , 2007, Geometric Modelling, Numerical Simulation, and Optimization.

[40]  Neil D. Lawrence,et al.  Variational Inference for Latent Variables and Uncertain Inputs in Gaussian Processes , 2016, J. Mach. Learn. Res..

[41]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[42]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[43]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[44]  Nicholas Zabaras,et al.  Structured Bayesian Gaussian process latent variable model , 2018, ArXiv.

[45]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .