Kin discrimination and cooperation in microbes.

Recognition of relatives is important in microbes because they perform many behaviors that have costs to the actor while benefiting neighbors. Microbes cooperate for nourishment, movement, virulence, iron acquisition, protection, quorum sensing, and production of multicellular biofilms or fruiting bodies. Helping others is evolutionarily favored if it benefits others who share genes for helping, as specified by kin selection theory. If microbes generally find themselves in clonal patches, then no special means of discrimination is necessary. Much real discrimination is actually of kinds, not kin, as in poison-antidote systems, such as bacteriocins, in which cells benefit their own kind by poisoning others, and in adhesion systems, in which cells of the same kind bind together. These behaviors can elevate kinship generally and make cooperation easier to evolve and maintain.

[1]  D. Queller,et al.  Expanded social fitness and Hamilton's rule for kin, kith, and kind , 2011, Proceedings of the National Academy of Sciences.

[2]  J. Mateo Self-referent phenotype matching and long-term maintenance of kin recognition , 2010, Animal Behaviour.

[3]  D. B. Kearns,et al.  A field guide to bacterial swarming motility , 2010, Nature Reviews Microbiology.

[4]  Stuart A. West,et al.  Promiscuity and the evolutionary transition to complex societies , 2010, Nature.

[5]  G. J. Velicer,et al.  Natural variation in developmental life-history traits of the bacterium Myxococcus xanthus. , 2010, FEMS microbiology ecology.

[6]  Michael D. Purugganan,et al.  Variation, Sex, and Social Cooperation: Molecular Population Genetics of the Social Amoeba Dictyostelium discoideum , 2010, PLoS genetics.

[7]  E. Ben-Jacob,et al.  Lethal protein produced in response to competition between sibling bacterial colonies , 2010, Proceedings of the National Academy of Sciences.

[8]  Carey D. Nadell,et al.  Emergence of Spatial Structure in Cell Groups and the Evolution of Cooperation , 2010, PLoS Comput. Biol..

[9]  Pieter T Visscher,et al.  Quorum sensing in natural environments: emerging views from microbial mats. , 2010, Trends in microbiology.

[10]  Michael Doebeli,et al.  ENVIRONMENTAL VISCOSITY DOES NOT AFFECT THE EVOLUTION OF COOPERATION DURING EXPERIMENTAL EVOLUTION OF COLICIGENIC BACTERIA , 2010, Evolution; international journal of organic evolution.

[11]  C. Lively,et al.  Spiteful Interactions in a Natural Population of the Bacterium Xenorhabdus bovienii , 2010, The American Naturalist.

[12]  J. Clobert,et al.  KIN‐BASED RECOGNITION AND SOCIAL AGGREGATION IN A CILIATE , 2009, Evolution; international journal of organic evolution.

[13]  M. Vos,et al.  Social Conflict in Centimeter-and Global-Scale Populations of the Bacterium Myxococcus xanthus , 2009, Current Biology.

[14]  J. Clobert,et al.  Cooperative social clusters are not destroyed by dispersal in a ciliate , 2009, BMC Evolutionary Biology.

[15]  M. Vos,et al.  Sociobiology of the myxobacteria. , 2009, Annual review of microbiology.

[16]  D. B. Kearns,et al.  Growing Bacillus subtilis tendrils sense and avoid each other. , 2009, FEMS microbiology letters.

[17]  Jason B. Wolf,et al.  Quantification of Social Behavior in D. discoideum Reveals Complex Fixed and Facultative Strategies , 2009, Current Biology.

[18]  J. Bever,et al.  Kin competition and the evolution of cooperation. , 2009, Trends in ecology & evolution.

[19]  G. Shaulsky,et al.  Polymorphic Members of the lag Gene Family Mediate Kin Discrimination in Dictyostelium , 2009, Current Biology.

[20]  Andy Gardner,et al.  Spite and virulence in the bacterium Pseudomonas aeruginosa , 2009, Proceedings of the National Academy of Sciences.

[21]  A. van Oudenaarden,et al.  Snowdrift game dynamics and facultative cheating in yeast , 2009, Nature.

[22]  C. Vandenbroucke-Grauls,et al.  The Dienes Phenomenon: Competition and Territoriality in Swarming Proteus mirabilis , 2009, Journal of bacteriology.

[23]  Eshel Ben-Jacob,et al.  Deadly competition between sibling bacterial colonies , 2009, Proceedings of the National Academy of Sciences.

[24]  M. Riley,et al.  Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract , 2009, BMC Microbiology.

[25]  K. Foster,et al.  FLO1 Is a Variable Green Beard Gene that Drives Biofilm-like Cooperation in Budding Yeast , 2008, Cell.

[26]  Sam P. Brown,et al.  A Social Life for Discerning Microbes , 2008, Cell.

[27]  E. Ruby,et al.  Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations , 2008, Applied and Environmental Microbiology.

[28]  G. Shaulsky,et al.  Kin Discrimination Increases with Genetic Distance in a Social Amoeba , 2008, PLoS biology.

[29]  J. Strassmann,et al.  Segregate or cooperate- a study of the interaction between two species of Dictyostelium , 2008, BMC Evolutionary Biology.

[30]  E. Greenberg,et al.  Genetic Determinants of Self Identity and Social Recognition in Bacteria , 2008, Science.

[31]  M. Vos,et al.  Natural variation of gliding motility in a centimetre-scale population of Myxococcus xanthus. , 2008, FEMS microbiology ecology.

[32]  A. Gardner,et al.  Sex ratio adjustment and kin discrimination in malaria parasites , 2008, Nature.

[33]  Anup Parikh,et al.  Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae , 2008, Nature.

[34]  A. Griffin,et al.  The Social Lives of Microbes , 2007 .

[35]  A. Griffin,et al.  Cooperation and conflict in quorum-sensing bacterial populations , 2007, Nature.

[36]  F. Rousset,et al.  CONSTRAINTS ON THE ORIGIN AND MAINTENANCE OF GENETIC KIN RECOGNITION , 2007, Evolution; international journal of organic evolution.

[37]  S. C. Winans,et al.  Cell–cell communication in the plant pathogen Agrobacterium tumefaciens , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  Andy Gardner,et al.  Frequency Dependence and Cooperation: Theory and a Test with Bacteria , 2007, The American Naturalist.

[39]  Kevin R Foster,et al.  High relatedness maintains multicellular cooperation in a social amoeba by controlling cheater mutants , 2007, Proceedings of the National Academy of Sciences.

[40]  J. Strassmann,et al.  Insect societies as divided organisms: The complexities of purpose and cross-purpose , 2007, Proceedings of the National Academy of Sciences.

[41]  K. Foster,et al.  What can microbial genetics teach sociobiology? , 2007, Trends in genetics : TIG.

[42]  K. Foster,et al.  Cooperation and conflict in microbial biofilms , 2007, Proceedings of the National Academy of Sciences.

[43]  C. O’Brien,et al.  Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. , 2006, Microbiology.

[44]  G. Shaulsky,et al.  Social evolution: Kin preference in a social microbe , 2006, Nature.

[45]  A. Griffin,et al.  Social evolution theory for microorganisms , 2006, Nature Reviews Microbiology.

[46]  A. Buckling,et al.  Cooperation and virulence in acute Pseudomonas aeruginosa infections , 2006, BMC Biology.

[47]  R. MacLean,et al.  Resource competition and social conflict in experimental populations of yeast , 2006, Nature.

[48]  M. Vos,et al.  Genetic Population Structure of the Soil Bacterium Myxococcusxanthus at the Centimeter Scale , 2006, Applied and Environmental Microbiology.

[49]  M. Surette,et al.  Communication in bacteria: an ecological and evolutionary perspective , 2006, Nature Reviews Microbiology.

[50]  V. Jansen,et al.  Altruism through beard chromodynamics , 2006, Nature.

[51]  V. Nanjundiah,et al.  Social behaviour in genetically heterogeneous groups of Dictyostelium giganteum , 2006, Behavioral Ecology and Sociobiology.

[52]  S. Aoki,et al.  Contact-Dependent Inhibition of Growth in Escherichia coli , 2005, Science.

[53]  Maynard V. Olson,et al.  Evidence for Diversifying Selection at the Pyoverdine Locus of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[54]  David L. Kirchman,et al.  The oceanic gel phase: a bridge in the DOM-POM continuum , 2004 .

[55]  A. Griffin,et al.  Cooperation and competition in pathogenic bacteria , 2004, Nature.

[56]  Andy Gardner,et al.  Bacteriocins, spite and virulence , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  Margaret A. Riley,et al.  Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo , 2004, Nature.

[58]  D. Greig,et al.  The Prisoner's Dilemma and polymorphism in yeast SUC genes , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[59]  H. Hirsch Bacteriocins from Myxococcus fulvus (Myxobacterales) , 1977, Archives of Microbiology.

[60]  W. G. Holmes The early history of Hamiltonian-based research on kin recognition , 2004 .

[61]  N. Tsutsui Scents of self: The expression component of self/non- self recognition systems , 2004 .

[62]  Aviva E Liebert,et al.  The Action Component of Recognition Systems: A Focus on the Response , 2004 .

[63]  J. Mateo Recognition systems and biological organization: The perception component of social recognition , 2004 .

[64]  Recognition systems: From components to conservation , 2004 .

[65]  P. Rainey,et al.  Evolution of cooperation and conflict in experimental bacterial populations , 2003, Nature.

[66]  L. Forney,et al.  Spatial Distribution of Rhodopseudomonas palustris Ecotypes on a Local Scale , 2003, Applied and Environmental Microbiology.

[67]  J. Strassmann,et al.  A linear dominance hierarchy among clones in chimeras of the social amoeba Dictyostelium discoideum , 2003, Journal of evolutionary biology.

[68]  K. Poole,et al.  Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. , 2003, Frontiers in bioscience : a journal and virtual library.

[69]  J. Strassmann,et al.  Co‐occurrence in nature of different clones of the social amoeba, Dictyostelium discoideum , 2003, Molecular ecology.

[70]  J. Strassmann,et al.  Single-Gene Greenbeard Effects in the Social Amoeba Dictyostelium discoideum , 2003, Science.

[71]  K. Foster,et al.  The costs and benefits of being a chimera , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  M. Pfaller,et al.  Modification of Dienes Mutual Inhibition Test for Epidemiological Characterization of Pseudomonas aeruginosa Isolates , 2002, Journal of Clinical Microbiology.

[73]  Sam P. Brown,et al.  Does multiple infection select for raised virulence? , 2002, Trends in microbiology.

[74]  M. Feldman,et al.  Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors , 2002, Nature.

[75]  V. Braun,et al.  Ton-dependent colicins and microcins: modular design and evolution. , 2002, Biochimie.

[76]  J. Mateo Kin-recognition abilities and nepotism as a function of sociality , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[77]  L. H. Taylor,et al.  Adaptive Dynamics of Infectious Diseases: Kin-selection Models as Evolutionary Explanations of Malaria , 2002 .

[78]  M. Riley,et al.  Bacteriocins: evolution, ecology, and application. , 2002, Annual review of microbiology.

[79]  R. Losick,et al.  Fruiting body formation by Bacillus subtilis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Gilley The Behavior of Honey Bees (Apis mellifera ligustica) during Queen Duels , 2001 .

[81]  M. Rasmussen,et al.  CELL DEATH IN TETRAHYMENA THERMOPHILA: NEW OBSERVATIONS ON CULTURE CONDITIONS , 2001, Cell biology international.

[82]  B. Crespi The evolution of social behavior in microorganisms. , 2001, Trends in ecology & evolution.

[83]  N. Moran,et al.  Vertical Transmission of Biosynthetic Plasmids in Aphid Endosymbionts (Buchnera) , 2001, Journal of bacteriology.

[84]  J. Strassmann,et al.  Altruism and social cheating in the social amoeba Dictyostelium discoideum , 2000, Nature.

[85]  J. Bever,et al.  Evolution of nitrogen fixation in spatially structured populations of Rhizobium , 2000, Heredity.

[86]  R. Kessin,et al.  Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type , 2000 .

[87]  R. Kessin,et al.  Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[88]  M. Riley,et al.  The ecological role of bacteriocins in bacterial competition. , 1999, Trends in microbiology.

[89]  E. Ponte,et al.  Detection of subtle phenotypes: the case of the cell adhesion molecule csA in Dictyostelium. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[90]  M. Riley,et al.  Temporal changes in the frequency of colicinogeny in Escherichia coli from house mice. , 1998, Microbiology.

[91]  Michael Travisano,et al.  Adaptive radiation in a heterogeneous environment , 1998, Nature.

[92]  S. Frank Foundations of Social Evolution , 2019 .

[93]  M. Riley,et al.  Molecular mechanisms of bacteriocin evolution. , 1998, Annual review of genetics.

[94]  R. Beavis,et al.  Bacterial interference caused by autoinducing peptide variants. , 1997, Science.

[95]  P. Cornelis,et al.  Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. , 1997, Microbiology.

[96]  A. Ventosa,et al.  Production of halocin is a practically universal feature of archaeal halophilic rods , 1994 .

[97]  D. Queller,et al.  A GENERAL MODEL FOR KIN SELECTION , 1992, Evolution; international journal of organic evolution.

[98]  D. Queller,et al.  Quantitative Genetics, Inclusive Fitness, and Group Selection , 1992, The American Naturalist.

[99]  D. Pfennig “KIN RECOGNITION” AMONG SPADEFOOT TOAD TADPOLES: A SIDE‐EFFECT OF HABITAT SELECTION? , 1990, Evolution; international journal of organic evolution.

[100]  A. Grafen Do animals really recognize kin? , 1990, Animal Behaviour.

[101]  B. Levin Frequency-dependent selection in bacterial populations. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[102]  P. Sherman,et al.  Problems of kin recognition. , 1988, Trends in ecology & evolution.

[103]  C. Michener,et al.  Kin recognition in animals. , 1989 .

[104]  R. Crozier GENETIC CLONAL RECOGNITION ABILITIES IN MARINE INVERTEBRATES MUST BE MAINTAINED BY SELECTION FOR SOMETHING ELSE , 1986, Evolution; international journal of organic evolution.

[105]  D. Pfennig,et al.  The evolution and ontogeny of nestmate recognition in social wasps , 1986 .

[106]  R. Gadagkar Kin recognition in social insects and other animals—A review of recent findings and a consideration of their relevance for the theory of kin selection , 1985 .

[107]  D. Queller Kinship, reciprocity and synergism in the evolution of social behaviour , 1985, Nature.

[108]  D. Queller,et al.  Kin selection and frequency dependence: a game theoretic approach , 1984 .

[109]  P. Sherman,et al.  Kin Recognition by Phenotype Matching , 1983, The American Naturalist.

[110]  P. Sherman,et al.  Kin recognition in animals , 1983 .

[111]  Michael D. Beecher,et al.  Signature Systems and Kin Recognition , 1982 .

[112]  P. Sherman,et al.  The Ontogeny of Kin Recognition in Two Species of Ground Squirrels1 , 1982 .

[113]  P. Richerson,et al.  Effect of phenotypic variation on kin selection. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[114]  J. Kusek,et al.  Typing of Proteus mirabilis by Bacteriocin Production and Sensitivity as a Possible Epidemiological Marker , 1980, Journal of clinical microbiology.

[115]  R. Lewontin ‘The Selfish Gene’ , 1977, Nature.

[116]  T. MacRae,et al.  Xanthacin. A bacteriocin of Myxococcus xanthus fb. , 1974, Canadian journal of microbiology.

[117]  W. Hamilton The genetical evolution of social behaviour. I. , 1964, Journal of theoretical biology.

[118]  L. Dienes Reproductive processes in Proteus cultures. , 1946, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.