Neuromorphic computing with antiferromagnetic spintronics

While artificial intelligence, capable of readily addressing cognitive tasks, has transformed technologies and daily lives, there remains a huge gap with biological systems in terms of performance per energy unit. Neuromorphic computing, in which hardware with alternative architectures, circuits, devices, and/or materials is explored, is expected to reduce the gap. Antiferromagnetic spintronics could offer a promising platform for this scheme. Active functionalities of antiferromagnetic systems have been demonstrated recently and several works indicated their potential for biologically inspired computing. In this perspective, we look through the prism of these works and discuss prospects and challenges of antiferromagnetic spintronics for neuromorphic computing. Overview and discussion are given on non-spiking artificial neural networks, spiking neural networks, and reservoir computing.

[1]  R. Arita,et al.  Electrical manipulation of a topological antiferromagnetic state , 2020, Nature.

[2]  M. Stiles,et al.  Neuromorphic spintronics , 2020, Nature Electronics.

[3]  Anne E Carpenter,et al.  Artificial intelligence and cancer , 2020, Nature Cancer.

[4]  Bin Gao,et al.  Fully hardware-implemented memristor convolutional neural network , 2020, Nature.

[5]  J. Åkerman,et al.  Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing , 2019, Nature Nanotechnology.

[6]  H. Nhalil,et al.  Switching of multi-state magnetic structures via domain wall propagation triggered by spin-orbit torques , 2019, Scientific Reports.

[7]  Yi Wang,et al.  Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator , 2019, Science.

[8]  S. Huang,et al.  Absence of Evidence of Electrical Switching of the Antiferromagnetic Néel Vector. , 2019, Physical review letters.

[9]  H. Ohno,et al.  Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles , 2019, Nature Communications.

[10]  Seung Hwan Lee,et al.  Temporal data classification and forecasting using a memristor-based reservoir computing system , 2019, Nature Electronics.

[11]  Qiangfei Xia,et al.  Reservoir Computing Using Diffusive Memristors , 2019, Adv. Intell. Syst..

[12]  Bob L. Sturm,et al.  Artificial Intelligence and Music: Open Questions of Copyright Law and Engineering Praxis , 2019, Arts.

[13]  A. Fert,et al.  Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets , 2019, Nature Materials.

[14]  Supriyo Datta,et al.  Integer factorization using stochastic magnetic tunnel junctions , 2019, Nature.

[15]  M. Dunz,et al.  Spin-orbit torque induced electrical switching of antiferromagnetic MnN , 2019, Physical Review Research.

[16]  Jinwoo Hwang,et al.  Electrical Switching of Tristate Antiferromagnetic Néel Order in α-Fe_{2}O_{3} Epitaxial Films. , 2019, Physical review letters.

[17]  Hayato Goto,et al.  Reservoir Computing on Spin-Torque Oscillator Array , 2019, Physical Review Applied.

[18]  Byong‐Guk Park,et al.  Antiferromagnetic Oscillators Driven by Spin Currents with Arbitrary Spin Polarization Directions , 2019, Physical Review Applied.

[19]  Juan Trastoy,et al.  Subthreshold firing in Mott nanodevices , 2019, Nature.

[20]  Hitoshi Kubota,et al.  Physical reservoir computing based on spin torque oscillator with forced synchronization , 2019, Applied Physics Letters.

[21]  H. Ohno,et al.  Artificial Neuron and Synapse Realized in an Antiferromagnet/Ferromagnet Heterostructure Using Dynamics of Spin–Orbit Torque Switching , 2019, Advanced materials.

[22]  Yoav Kalcheim,et al.  A caloritronics-based Mott neuristor , 2019, Scientific Reports.

[23]  Run‐Wei Li,et al.  Ten States of Nonvolatile Memory through Engineering Ferromagnetic Remanent Magnetization , 2018, Advanced Functional Materials.

[24]  E. Saitoh,et al.  Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging. , 2018, Physical review letters.

[25]  Michael Pfeiffer,et al.  Deep Learning With Spiking Neurons: Opportunities and Challenges , 2018, Front. Neurosci..

[26]  Hiroko Arai,et al.  Spin-wave coupled spin torque oscillators for artificial neural network , 2018, Journal of Applied Physics.

[27]  Hideo Ohno,et al.  Perspective: Spintronic synapse for artificial neural network , 2018, Journal of Applied Physics.

[28]  P. Stamenov,et al.  Antiferromagnetic single-layer spin-orbit torque oscillators , 2018, Physical Review B.

[29]  A. Hirose,et al.  Recent Advances in Physical Reservoir Computing: A Review , 2018, Neural Networks.

[30]  Shishen Yan,et al.  Terahertz spin-transfer torque oscillator based on a synthetic antiferromagnet , 2018, Journal of Magnetism and Magnetic Materials.

[31]  M. Yun,et al.  Low‐Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing , 2018, Advanced materials.

[32]  T. Masquelier,et al.  Deep Learning in Spiking Neural Networks , 2018, Neural Networks.

[33]  F. Pan,et al.  Antidamping-Torque-Induced Switching in Biaxial Antiferromagnetic Insulators. , 2018, Physical review letters.

[34]  Xing Chen,et al.  A compact skyrmionic leaky-integrate-fire spiking neuron device. , 2018, Nanoscale.

[35]  C. Felser,et al.  The multiple directions of antiferromagnetic spintronics , 2018 .

[36]  Tobias Kampfrath,et al.  Terahertz electrical writing speed in an antiferromagnetic memory , 2018, Science Advances.

[37]  M. Stiles,et al.  Synthetic antiferromagnetic spintronics , 2018, Nature Physics.

[38]  Johan Akerman,et al.  Ultra-fast artificial neuron: generation of picosecond-duration spikes in a current-driven antiferromagnetic auto-oscillator , 2018, Scientific Reports.

[39]  J. Strachan,et al.  Fully memristive neural networks for pattern classification with unsupervised learning , 2018, Nature Electronics.

[40]  Gouhei Tanaka,et al.  Reservoir Computing With Spin Waves Excited in a Garnet Film , 2018, IEEE Access.

[41]  S. H. Choday,et al.  Loihi: A Neuromorphic Manycore Processor with On-Chip Learning , 2018, IEEE Micro.

[42]  H. Ohno,et al.  Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions , 2017, Nature Communications.

[43]  Seung Hwan Lee,et al.  Reservoir computing using dynamic memristors for temporal information processing , 2017, Nature Communications.

[44]  Damien Querlioz,et al.  Vowel recognition with four coupled spin-torque nano-oscillators , 2017, Nature.

[45]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[46]  George Bourianoff,et al.  Potential implementation of reservoir computing models based on magnetic skyrmions , 2017, 1709.08911.

[47]  A. Manchon,et al.  Theory of the Topological Spin Hall Effect in Antiferromagnetic Skyrmions: Impact on Current-Induced Motion. , 2017, Physical review letters.

[48]  Takuo Ohkochi,et al.  Spin torque control of antiferromagnetic moments in NiO , 2017, Scientific Reports.

[49]  N. Mohapatra,et al.  Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics in Floating-Body MOSFET , 2017, Scientific Reports.

[50]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[51]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[52]  T. Jungwirth,et al.  Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility , 2017, Nature Communications.

[53]  Nicolas Locatelli,et al.  Learning through ferroelectric domain dynamics in solid-state synapses , 2017, Nature Communications.

[54]  M. Rozenberg,et al.  A Leaky‐Integrate‐and‐Fire Neuron Analog Realized with a Mott Insulator , 2017 .

[55]  Hideo Ohno,et al.  Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures , 2017 .

[56]  Benjamin Krueger,et al.  Magnetic Skyrmion as a Nonlinear Resistive Element: A Potential Building Block for Reservoir Computing , 2017, 1702.04298.

[57]  Damien Querlioz,et al.  Neuromorphic computing with nanoscale spintronic oscillators , 2017, Nature.

[58]  Johan Åkerman,et al.  Long-range mutual synchronization of spin Hall nano-oscillators , 2016, Nature Physics.

[59]  E. Vianello,et al.  Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting , 2016, Frontiers in neuroscience.

[60]  T. Jungwirth,et al.  Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet. , 2016, Physical review letters.

[61]  H. Larochelle,et al.  Deep learning with coherent nanophotonic circuits , 2016, Nature Photonics.

[62]  B. Ivanov,et al.  Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current , 2016, Scientific Reports.

[63]  Yan Zhou,et al.  Magnetic skyrmion-based synaptic devices , 2016, Nanotechnology.

[64]  S. Yuasa,et al.  A magnetic synapse: multilevel spin-torque memristor with perpendicular anisotropy , 2016, Scientific Reports.

[65]  T. Jungwirth,et al.  Imaging Current-Induced Switching of Antiferromagnetic Domains in CuMnAs. , 2016, Physical review letters.

[66]  S. Baek,et al.  Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. , 2016, Nature nanotechnology.

[67]  Gang Xu,et al.  Dirac fermions in an antiferromagnetic semimetal , 2016, Nature Physics.

[68]  Nikil D. Dutt,et al.  A GPU-accelerated cortical neural network model for visually guided robot navigation , 2015, Neural Networks.

[69]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[70]  Di Xiao,et al.  Terahertz Antiferromagnetic Spin Hall Nano-Oscillator. , 2015, Physical review letters.

[71]  Di Xiao,et al.  Antiferromagnetic Spin Wave Field-Effect Transistor , 2015, Scientific Reports.

[72]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[73]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[74]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.

[75]  A. Serga,et al.  Magnon spintronics , 2015, Nature Physics.

[76]  J. Barker,et al.  Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. , 2015, Physical review letters.

[77]  Yu-Fen Wang,et al.  Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device , 2015, Scientific Reports.

[78]  A. Rushforth,et al.  Electrical switching of an antiferromagnet , 2015, Science.

[79]  Chun-Yeol You,et al.  Critical Dzyaloshinskii–Moriya interaction energy density for the skyrmion states formation in ultrathin ferromagnetic layer , 2015 .

[80]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[81]  Wei Zhang,et al.  Spin Hall effects in metallic antiferromagnets. , 2014, Physical review letters.

[82]  Shoji Ikeda,et al.  Properties of magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure down to junction diameter of 11 nm , 2014 .

[83]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[84]  Chung Lam,et al.  Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array , 2014, Front. Neurosci..

[85]  Benjamin Schrauwen,et al.  Memristor Models for Machine Learning , 2014, Neural Computation.

[86]  C. Eliasmith,et al.  The use and abuse of large-scale brain models , 2014, Current Opinion in Neurobiology.

[87]  N. Kasabov NeuCube: A spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data , 2014, Neural Networks.

[88]  Chiara Bartolozzi,et al.  Neuromorphic Electronic Circuits for Building Autonomous Cognitive Systems , 2014, Proceedings of the IEEE.

[89]  Geert Morthier,et al.  Experimental demonstration of reservoir computing on a silicon photonics chip , 2014, Nature Communications.

[90]  Kyung-Jin Lee,et al.  Spin wave nonreciprocity for logic device applications , 2013, Scientific Reports.

[91]  S. Auffret,et al.  Ultrafast magnetization switching by spin-orbit torques , 2013, 1310.5586.

[92]  Q. Niu,et al.  Anomalous Hall effect arising from noncollinear antiferromagnetism. , 2013, Physical review letters.

[93]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[94]  X. Miao,et al.  Ultrafast Synaptic Events in a Chalcogenide Memristor , 2013, Scientific Reports.

[95]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[96]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[97]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[98]  Filip Ponulak,et al.  Introduction to spiking neural networks: Information processing, learning and applications. , 2011, Acta neurobiologiae experimentalis.

[99]  Fabien Alibart,et al.  A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing , 2011, ArXiv.

[100]  M. Karpovski,et al.  Sixteen-state magnetic memory based on the extraordinary Hall effect , 2011, 1112.1624.

[101]  L. Appeltant,et al.  Information processing using a single dynamical node as complex system , 2011, Nature communications.

[102]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[103]  J. Hayakawa,et al.  A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. , 2011, Nature materials.

[104]  Bernabé Linares-Barranco,et al.  On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex , 2011, Front. Neurosci..

[105]  S. Maekawa,et al.  Transmission of electrical signals by spin-wave interconversion in a magnetic insulator , 2010, Nature.

[106]  V. Tiberkevich,et al.  Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current , 2009, IEEE Transactions on Magnetics.

[107]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[108]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[109]  G. Edelman,et al.  Large-scale model of mammalian thalamocortical systems , 2008, Proceedings of the National Academy of Sciences.

[110]  Robert O Deaner,et al.  Overall Brain Size, and Not Encephalization Quotient, Best Predicts Cognitive Ability across Non-Human Primates , 2007, Brain, Behavior and Evolution.

[111]  D. Ralph,et al.  Microwave oscillations of a nanomagnet driven by a spin-polarized current , 2003, Nature.

[112]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[113]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[114]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[115]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[116]  L. Chua Memristor-The missing circuit element , 1971 .

[117]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[118]  Yoshihiko Horio,et al.  Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation , 2016 .

[119]  C. Eliasmith,et al.  Supplementary Materials for A Large-Scale Model of the Functioning Brain , 2012 .

[120]  Alfred Leitenstorfer,et al.  Coherent terahertz control of antiferromagnetic spin waves , 2011 .