Particle Filtering of Stochastic Volatility Modeled With Leverage

In this paper, we address univariate stochastic volatility models that allow for correlation of the perturbations in the state and observation equations, i.e., models with leverage. We propose a particle filtering method for estimating the posterior distributions of the log-volatility, where we employ Rao-Blackwellization of the unknown static parameters of the model. We also propose a scheme for choosing the best model from a set of considered models and a test for assessing the validity of the selected model. We demonstrate the performance of the proposed method on simulated and S&P 500 data.

[1]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[2]  N. Shephard,et al.  Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns , 1996 .

[3]  Nicholas G. Polson,et al.  Particle Filtering , 2006 .

[4]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[5]  Hedibert F. Lopes,et al.  Particle filters and Bayesian inference in financial econometrics , 2011 .

[6]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[7]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[8]  Silvano Bordignon,et al.  Sequential Monte Carlo Methods for Stochastic Volatility Models with Jumps , 2006 .

[9]  A. Leon-Garcia,et al.  Probability, statistics, and random processes for electrical engineering , 2008 .

[10]  Petar M. Djuric,et al.  Assessment of Nonlinear Dynamic Models by Kolmogorov–Smirnov Statistics , 2010, IEEE Transactions on Signal Processing.

[11]  Nicholas G. Polson,et al.  State Space and Unobserved Component Models: Practical filtering for stochastic volatility models , 2004 .

[12]  Carlos M. Carvalho,et al.  Simulation-based sequential analysis of Markov switching stochastic volatility models , 2007, Comput. Stat. Data Anal..

[13]  F. Black,et al.  The Valuation of Option Contracts and a Test of Market Efficiency , 1972 .

[14]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[15]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[16]  Jun Yu On Leverage in a Stochastic Volatility Model , 2004 .

[17]  Petar M. Djuric,et al.  The Science Behind Risk Management , 2011, IEEE Signal Processing Magazine.

[18]  Rong Chen,et al.  Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering , 2000, IEEE Trans. Inf. Theory.

[19]  Torben G. Andersen,et al.  Stochastic volatility , 2003 .

[20]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[21]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[22]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[23]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[24]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[25]  S. Taylor Financial Returns Modelled by the Product of Two Stochastic Processes , 1961 .

[26]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[27]  P. Djurić,et al.  Particle filtering , 2003, IEEE Signal Process. Mag..

[28]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[29]  Sergey Sarykalin,et al.  Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization , 2008 .

[30]  Petar M. Djuric,et al.  Estimation of predictive loss distributions by particle filtering , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[31]  Barr Rosenberg. The Behavior of Random Variables with Nonstationary Variance and the Distribution of Security Prices , 1972 .

[32]  Marc S. Paolella,et al.  Value-at-Risk Prediction: A Comparison of Alternative Strategies , 2005 .

[33]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[34]  Stephen L Taylor,et al.  MODELING STOCHASTIC VOLATILITY: A REVIEW AND COMPARATIVE STUDY , 1994 .