Theory of topological insulator waveguides: polarization control and the enhancement of the magneto-electric effect

Topological insulators subject to a time-reversal-symmetry-breaking perturbation are predicted to display a magneto-electric effect that causes the electric and magnetic induction fields to mix at the material’s surface. This effect induces polarization rotations of between ≈1–10 mrad per interface in an incident plane-polarized electromagnetic wave normal to a multilayered structure. Here we show, theoretically and numerically, that by using a waveguide geometry with a topological insulator guide layer and magneto-dielectric cladding it is possible to achieve rotations of ≈100 mrad and generate an elliptical polarization with only a three-layered structure. This geometry is beneficial, not only as a way to enhance the magneto-electric effect, rendering it easier to observe, but also as a method for controlling the polarization of electromagnetic radiation.

[1]  Luca P. Carloni,et al.  Photonic Network-on-Chip Design , 2013, Integrated Circuits and Systems.

[2]  The Electromagnetic Green's Function for Layered Topological Insulators , 2015, 1509.03012.

[3]  L. Molenkamp,et al.  Room temperature electrically tunable terahertz Faraday effect , 2012, 1211.5569.

[4]  Jiadong Zang,et al.  Inducing a Magnetic Monopole with Topological Surface States , 2009, Science.

[5]  Wang-Kong Tse,et al.  Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. , 2010, Physical review letters.

[6]  F. Wilczek,et al.  Two applications of axion electrodynamics. , 1987, Physical review letters.

[7]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[8]  A. Markelz,et al.  Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. , 2011, Physical review letters.

[9]  Wei Liu,et al.  Growth and characterization of Bi2Se3 thin films by pulsed laser deposition using alloy target , 2011 .

[10]  L. Molenkamp,et al.  Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range. , 2011, Physical review letters.

[11]  H. Drew,et al.  Far-infrared cyclotron resonance and Faraday effect in Bi 2 Se 3 , 2010, 1006.1008.

[12]  Xiao-Liang Qi,et al.  Topological field theory of time-reversal invariant insulators , 2008, 0802.3537.

[13]  Č. Drašar,et al.  Strong interband Faraday rotation in 3D topological insulator Bi2Se3 , 2015, Scientific Reports.

[14]  Wang-Kong Tse,et al.  Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems , 2011, 1108.3858.

[15]  Xiao-Liang Qi,et al.  Topological quantization in units of the fine structure constant. , 2010, Physical review letters.

[16]  Yoichi Ando,et al.  Landau level spectroscopy of surface states in the topological insulator Bi 0.91 Sb 0.09 via magneto-optics , 2012 .

[17]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[18]  N. Stojilovic,et al.  Signatures of charge inhomogeneities in the infrared spectra of topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  C. DiMarzio,et al.  Magneto-optic Kerr effect in a slab waveguide , 2001 .

[20]  Y. Park,et al.  Transferring MBE-grown topological insulator films to arbitrary substrates and metal-insulator transition via Dirac gap. , 2014, Nano letters.

[21]  Jing Wang,et al.  Topological insulators for high-performance terahertz to infrared applications , 2010, 1101.3583.

[22]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[23]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[24]  F. Meier,et al.  A tunable topological insulator in the spin helical Dirac transport regime , 2009, Nature.

[25]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[26]  Y. Tokura,et al.  Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state , 2016, Nature Communications.

[27]  Haijun Zhang,et al.  Model Hamiltonian for topological insulators , 2010, 1005.1682.

[28]  W. Duan,et al.  Topology-Driven Magnetic Quantum Phase Transition in Topological Insulators , 2013, Science.

[29]  G. Gu,et al.  Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3 , 2014, Proceedings of the National Academy of Sciences.

[30]  M. Chang,et al.  Optical signature of topological insulators , 2009 .

[31]  X. Dai,et al.  First-principles studies of the three-dimensional strong topological insulators Bi2Te3, Bi2Se3 and Sb2Te3 , 2010, 1003.5082.

[32]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[33]  Z. K. Liu,et al.  Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator , 2010, Science.

[34]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[35]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[36]  Wang-Kong Tse,et al.  Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields , 2010, 1010.0240.