Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members

Abstract In this paper, back-propagation neural networks (BPNN) and an adaptive neuro-fuzzy inference system (ANFIS) models developed to predict the moment capacity of ferrocement members are presented. A database from tests on ferrocement members is developed from the review of literature and some new tests. The selected input variables include the width and the depth of specimens, cube compressive strength of mortar, and tensile strength and volume fraction of wire mesh. A parametric study is carried out using BPNN to study the influence of each parameter affecting the moment capacity of the ferrocement member. The results of this study indicate that both BPNN and ANFIS provide good predictions which are better than those from other available methods. These models can serve as reliable and simple predictive tools for the prediction of moment capacity of ferrocement members.

[1]  Carlos Gershenson,et al.  Artificial Neural Networks for Beginners , 2003, ArXiv.

[2]  S. M. Seyedpoor,et al.  Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization , 2010 .

[3]  G. David Garson,et al.  Interpreting neural-network connection weights , 1991 .

[4]  Hojjat Adeli,et al.  A neural dynamics model for structural optimization—Theory , 1995 .

[5]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[6]  Antoni Cladera,et al.  Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: beams with stirrups , 2004 .

[7]  Antoine E. Naaman,et al.  Flexural Design of Ferrocement : Computerized Evaluation and Design Aids , 1986 .

[8]  Hojjat Adeli,et al.  Perceptron Learning in Engineering Design , 2008 .

[9]  Sibel Pamukcu,et al.  Data generation for shear modulus and damping ratio in reinforced sands using adaptive neuro-fuzzy inference system , 2004 .

[10]  Michio Sugeno,et al.  Industrial Applications of Fuzzy Control , 1985 .

[11]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[12]  C. S. George Lee,et al.  Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems , 1996 .

[13]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[14]  Maria Q. Feng,et al.  DAMAGE ASSESSMENT OF JACKETED RC COLUMNS USING VIBRATION TESTS , 1999 .

[15]  Marouane Temimi,et al.  Non-parametric Methods for Soil Moisture Retrieval from Satellite Remote Sensing Data , 2009, Remote. Sens..

[16]  Prakash Desayi,et al.  Strength of ligthweight ferrocement in flexure , 1991 .

[17]  S P Shah,et al.  MOMENT CAPACITY AND CRACKING BEHAVIOUR OF FERROCEMENT IN FLEXURE , 1973 .

[18]  Jorge Vanegas Computing in Civil Engineering , 1996 .

[19]  B. Bose,et al.  Evaluation of membership functions for fuzzy logic controlled induction motor drive , 2002, IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02.

[20]  Stuart S. Chen,et al.  Neural Networks in Dynamic Analysis of Bridges , 1992 .

[21]  Ian Flood,et al.  Neural Networks in Civil Engineering. I: Principles and Understanding , 1994 .

[22]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[23]  Alper Sezer,et al.  Prediction of sulfate expansion of PC mortar using adaptive neuro-fuzzy methodology , 2007 .

[24]  Fereidoun Amini,et al.  Neural Network for Structure Control , 1995 .

[25]  S. Jonic,et al.  Three machine learning techniques for automatic determination of rules to control locomotion , 1999, IEEE Transactions on Biomedical Engineering.

[26]  Ayman A. Seleemah A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement , 2005 .

[27]  M. Q. Feng,et al.  Identification of a Dynamic System Using Ambient Vibration Measurements , 1998 .

[28]  İlker Bekir Topçu,et al.  Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic , 2008 .

[29]  Gokhan Saygili,et al.  Evaluation of liquefaction potential of soil deposits using artificial neural networks , 2007 .

[30]  Solomon Tesfamariam,et al.  Adaptive Network — Fuzzy Inferencing to Estimate Concrete Strength Using Mix Design , 2007 .

[31]  Mehmet Polat Saka,et al.  PREDICTION OF ULTIMATE SHEAR STRENGTH OF REINFORCED-CONCRETE DEEP BEAMS USING NEURAL NETWORKS , 2001 .

[32]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[33]  P. Paramasivam,et al.  Effect of Arrangements of Reinforcements on Mechanical Properties of Ferrocement , 1988 .

[34]  Qian Han-cheng,et al.  Fuzzy neural network modeling of material properties , 2002 .

[35]  Jamal A. Abdalla,et al.  Modeling and simulation of shear resistance of R/C beams using artificial neural network , 2007, J. Frankl. Inst..

[36]  K. P. Sudheer,et al.  Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models , 2008 .

[37]  In-Won Lee,et al.  Application of Neural Networks for Proportioning of Concrete Mixes , 1999 .

[38]  M. A. Mansur Ultimate strength design of ferrocement in flexure , 1988 .