Low-rank decomposition-based anomaly detection
暂无分享,去创建一个
Konstantinos Kalpakis | Shiming Yang | Chein-I Chang | Shih-Yu Chen | Chein-I. Chang | K. Kalpakis | Shih-Yu Chen | Shiming Yang
[1] Chein-I. Chang. Hyperspectral Imaging: Techniques for Spectral Detection and Classification , 2003 .
[2] Emmanuel J. Candès,et al. Matrix Completion With Noise , 2009, Proceedings of the IEEE.
[3] John Wright,et al. Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.
[4] Chein-I Chang,et al. An experiment-based quantitative and comparative analysis of target detection and image classification algorithms for hyperspectral imagery , 2000, IEEE Trans. Geosci. Remote. Sens..
[5] Chein-I Chang,et al. Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..
[6] Yi Ma,et al. Robust principal component analysis? , 2009, JACM.
[7] John Wright,et al. Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.
[8] Heesung Kwon,et al. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.
[9] Chein-I Chang,et al. Hyperspectral Data Processing: Algorithm Design and Analysis , 2013 .
[10] Emmanuel J. Candès,et al. Templates for convex cone problems with applications to sparse signal recovery , 2010, Math. Program. Comput..
[11] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[12] Christopher M. Bishop,et al. Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.
[13] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[14] Pablo A. Parrilo,et al. Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..
[15] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[16] Xiaoli Yu,et al. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..