Data-driven discovery of Koopman eigenfunctions for control

Data-driven transformations that reformulate nonlinear systems in a linear framework have the potential to enable the prediction, estimation, and control of strongly nonlinear dynamics using linear systems theory. The Koopman operator has emerged as a principled linear embedding of nonlinear dynamics, and its eigenfunctions establish intrinsic coordinates along which the dynamics behave linearly. Previous studies have used finite-dimensional approximations of the Koopman operator for model-predictive control approaches. In this work, we illustrate a fundamental closure issue of this approach and argue that it is beneficial to represent the dynamics directly in eigenfunction coordinates. These coordinates form a Koopman-invariant subspace by design and, thus, have improved predictive power. We show then how the control is formulated in these intrinsic coordinates and discuss potential benefits and caveats of this perspective. The resulting control architecture is termed Koopman Reduced Order Nonlinear Identification and Control (KRONIC). It is further demonstrated that these eigenfunctions can be approximated with data-driven regression and power series expansions, based on the partial differential equation governing the infinitesimal generator of the Koopman operator. Validating discovered eigenfunctions is crucial and we show that lightly damped eigenfunctions may be faithfully extracted. These lightly damped eigenfunctions are particularly relevant for control, as they correspond to nearly conserved quantities that are associated with persistent dynamics, such as the Hamiltonian. KRONIC is then demonstrated on a number of relevant examples, including 1) a nonlinear system with a known linear embedding, 2) a variety of Hamiltonian systems, and 3) a high-dimensional double-gyre model for ocean mixing.

[1]  Steven L. Brunton,et al.  Compressed Dynamic Mode Decomposition for Real-Time Object Detection , 2015, ArXiv.

[2]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[3]  Sergey Levine,et al.  Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Marko Bacic,et al.  Model predictive control , 2003 .

[5]  Steven L. Brunton,et al.  Inferring Biological Networks by Sparse Identification of Nonlinear Dynamics , 2016, IEEE Transactions on Molecular, Biological and Multi-Scale Communications.

[6]  A. Isidori,et al.  Adaptive control of linearizable systems , 1989 .

[7]  R. Bellman Dynamic programming. , 1957, Science.

[8]  Tayfun Çimen,et al.  State-Dependent Riccati Equation (SDRE) Control: A Survey , 2008 .

[9]  Steven L. Brunton,et al.  Generalizing Koopman Theory to Allow for Inputs and Control , 2016, SIAM J. Appl. Dyn. Syst..

[10]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[11]  Spyros A. Svoronos,et al.  Discretization of nonlinear control systems via the Carleman linearization , 1994 .

[12]  J. Marsden,et al.  Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows , 2005 .

[13]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[14]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[15]  Miroslav Krstic,et al.  Stability of extremum seeking feedback for general nonlinear dynamic systems , 2000, Autom..

[16]  Peter Kuster,et al.  Nonlinear And Adaptive Control Design , 2016 .

[17]  Igor Mezic,et al.  On applications of the spectral theory of the Koopman operator in dynamical systems and control theory , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[18]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[19]  F. Guéniat,et al.  A dynamic mode decomposition approach for large and arbitrarily sampled systems , 2015 .

[20]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Clarence W. Rowley,et al.  Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition , 2014, Experiments in Fluids.

[22]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[23]  Frank Noé,et al.  Variational tensor approach for approximating the rare-event kinetics of macromolecular systems. , 2016, The Journal of chemical physics.

[24]  Jeff Moehlis,et al.  An Energy-Optimal Methodology for Synchronization of Excitable Media , 2014, SIAM J. Appl. Dyn. Syst..

[25]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[26]  Nikolaus A. Adams,et al.  Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction , 2012, Journal of Fluid Mechanics.

[27]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[28]  F. Allgöwer,et al.  Nonlinear Model Predictive Control: From Theory to Application , 2004 .

[29]  David E. Cox,et al.  State-Dependent Riccati Equation Regulation of Systems with State and Control Nonlinearities , 2004 .

[30]  A. Banaszuk,et al.  Linear observer synthesis for nonlinear systems using Koopman Operator framework , 2016 .

[31]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[32]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[33]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[34]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[35]  Igor Mezic,et al.  A spectral operator-theoretic framework for global stability , 2013, 52nd IEEE Conference on Decision and Control.

[36]  O. Nelles Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models , 2000 .

[37]  Joshua L. Proctor,et al.  Discovering dynamic patterns from infectious disease data using dynamic mode decomposition , 2015, International health.

[38]  J. Cloutier State-dependent Riccati equation techniques: an overview , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[39]  Robert E. Kalaba,et al.  Selected Papers On Mathematical Trends In Control Theory , 1977 .

[40]  Clarence W. Rowley,et al.  De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets , 2015, Theoretical and Computational Fluid Dynamics.

[41]  Riccardo Marino,et al.  Nonlinear control design: geometric, adaptive and robust , 1995 .

[42]  Igor Mezic,et al.  Ergodic Theory, Dynamic Mode Decomposition, and Computation of Spectral Properties of the Koopman Operator , 2016, SIAM J. Appl. Dyn. Syst..

[43]  Clarence W. Rowley,et al.  Extending Data-Driven Koopman Analysis to Actuated Systems , 2016 .

[44]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[45]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[46]  Katsuhisa Furuta,et al.  Swinging up a pendulum by energy control , 1996, Autom..

[47]  Maziar S. Hemati,et al.  Dynamic mode shaping for fluid flow control: New strategies for transient growth suppression , 2017 .

[48]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[49]  Rick Chartrand,et al.  Numerical Differentiation of Noisy, Nonsmooth Data , 2011 .

[50]  Igor Mezic,et al.  Koopman Operator Spectrum and Data Analysis , 2017, 1702.07597.

[51]  Clarence W. Rowley,et al.  Spectral analysis of fluid flows using sub-Nyquist-rate PIV data , 2014, Experiments in Fluids.

[52]  Igor Mezic,et al.  A Data-Driven Koopman Model Predictive Control Framework for Nonlinear Partial Differential Equations , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[53]  Stephen P. Banks,et al.  Infinite-dimensional Carleman linearization, the Lie series and optimal control of non-linear partial differential equations , 1992 .

[54]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[55]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[56]  Petar V. Kokotovic,et al.  Singular perturbations and order reduction in control theory - An overview , 1975, at - Automatisierungstechnik.

[57]  莊哲男 Applied System Identification , 1994 .

[58]  Igor Mezic,et al.  An approximate parametrization of the ergodic partition using time averaged observables , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[59]  I. Kanellakopoulos,et al.  Systematic Design of Adaptive Controllers for Feedback Linearizable Systems , 1991, 1991 American Control Conference.

[60]  Steven L. Brunton,et al.  Chaos as an intermittently forced linear system , 2016, Nature Communications.

[61]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[62]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[63]  I. Kanellakopoulos,et al.  Adaptive nonlinear control without overparametrization , 1992 .

[64]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[65]  W. Steeb,et al.  Nonlinear dynamical systems and Carleman linearization , 1991 .

[66]  Steven L. Brunton,et al.  Deep learning for universal linear embeddings of nonlinear dynamics , 2017, Nature Communications.

[67]  Amit Surana,et al.  Koopman operator based observer synthesis for control-affine nonlinear systems , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[68]  O. Junge,et al.  The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems , 2001 .

[69]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[70]  Dimitrios Giannakis,et al.  Delay-Coordinate Maps and the Spectra of Koopman Operators , 2017, Journal of Statistical Physics.

[71]  Steven L. Brunton,et al.  Dynamic Mode Decomposition for Robust PCA with Applications to Foreground/Background Subtraction in Video Streams and Multi-Resolution Analysis , 2016 .

[72]  Philip H. W. Leong,et al.  High-dimensional time series prediction using kernel-based Koopman mode regression , 2017, Nonlinear Dynamics.

[73]  Alexandre Mauroy,et al.  Linear identification of nonlinear systems: A lifting technique based on the Koopman operator , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[74]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .

[75]  Todd D. Murphey,et al.  Model-Based Control Using Koopman Operators , 2017, Robotics: Science and Systems.

[76]  Jin Soo Lee,et al.  Extremum seeking control for discrete-time systems , 2002, IEEE Trans. Autom. Control..

[77]  Yoshihiko Susuki,et al.  A prony approximation of Koopman Mode Decomposition , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[78]  J. Lévine,et al.  On dynamic feedback linearization , 1989 .

[79]  P.V. Kokotovic,et al.  The joy of feedback: nonlinear and adaptive , 1992, IEEE Control Systems.

[80]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[81]  Edmond A. Jonckheere,et al.  A new set of invariants for linear systems--Application to reduced order compensator design , 1983 .

[82]  Igor Mezi'c,et al.  Geometry of the ergodic quotient reveals coherent structures in flows , 2012, 1204.2050.

[83]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[84]  Arthur Gelb,et al.  Multiple-Input Describing Functions and Nonlinear System Design , 1968 .

[85]  Frank Noé,et al.  A Variational Approach to Modeling Slow Processes in Stochastic Dynamical Systems , 2012, Multiscale Model. Simul..

[86]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[87]  J. D. Pearson Approximation Methods in Optimal Control I. Sub-optimal Control† , 1962 .

[88]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[89]  Yoshinobu Kawahara,et al.  Dynamic Mode Decomposition with Reproducing Kernels for Koopman Spectral Analysis , 2016, NIPS.

[90]  Gary Froyland,et al.  An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems , 2012, 1210.7418.

[91]  C. Caramanis What is ergodic theory , 1963 .

[92]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[93]  Erdal Kayacan,et al.  Model Predictive Control in Aerospace Systems: Current State and Opportunities , 2017 .

[94]  John Wright,et al.  Finding a Sparse Vector in a Subspace: Linear Sparsity Using Alternating Directions , 2014, IEEE Transactions on Information Theory.

[95]  Clarence W. Rowley,et al.  A Kernel Approach to Data-Driven Koopman Spectral Analysis , 2014 .

[96]  J. Nathan Kutz,et al.  Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video , 2014, ArXiv.

[97]  I. P. Kornfelʹd,et al.  Ergodic Theory , 1963 .

[98]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .

[99]  Shervin Bagheri,et al.  Koopman-mode decomposition of the cylinder wake , 2013, Journal of Fluid Mechanics.

[100]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[101]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[102]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[103]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[104]  Igor Mezic,et al.  Linearization in the large of nonlinear systems and Koopman operator spectrum , 2013 .

[105]  J. Lévine,et al.  Sufficient conditions for dynamic state feedback linearization , 1991 .

[106]  Steven L. Brunton,et al.  Machine Learning Control – Taming Nonlinear Dynamics and Turbulence , 2016, Fluid Mechanics and Its Applications.

[107]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[108]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[109]  Andrzej Banaszuk,et al.  Comparison of systems with complex behavior , 2004 .

[110]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[111]  Steven L. Brunton,et al.  Compressed sensing and dynamic mode decomposition , 2016 .

[112]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[113]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[114]  Jun Wu,et al.  Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model☆ , 2009 .

[115]  D. Giannakis Data-driven spectral decomposition and forecasting of ergodic dynamical systems , 2015, Applied and Computational Harmonic Analysis.

[116]  Bernard Brogliato,et al.  Adaptive Control of Robot Manipulators with Flexible Joints , 1991, 1991 American Control Conference.

[117]  Clarence W. Rowley,et al.  Dynamic mode decomposition for large and streaming datasets , 2014, 1406.7187.

[118]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[119]  Kartik B. Ariyur,et al.  Real-Time Optimization by Extremum-Seeking Control , 2003 .

[120]  Heni Ben Amor,et al.  Estimation of perturbations in robotic behavior using dynamic mode decomposition , 2015, Adv. Robotics.

[121]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[122]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[123]  Roger W. Brockett Volterra series and geometric control theory , 1976, Autom..

[124]  Michael Dellnitz,et al.  Chapter 5 - Set Oriented Numerical Methods for Dynamical Systems , 2002 .

[125]  Damien Ernst,et al.  An Optimal Control Formulation of Pulse-Based Control Using Koopman Operator , 2017, Autom..

[126]  Stefan Klus,et al.  On the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.05997.

[127]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[128]  Solomon,et al.  Chaotic particle transport in time-dependent Rayleigh-Bénard convection. , 1988, Physical review. A, General physics.

[129]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[130]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[131]  Steven L. Brunton,et al.  Multi-Resolution Dynamic Mode Decomposition , 2015 .

[132]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[133]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[134]  Peter J. Schmid,et al.  Application of the dynamic mode decomposition to experimental data , 2011 .

[135]  Carlos Bordons Alba,et al.  Model Predictive Control , 2012 .