ANALYSIS OF A PHASE FIELD NAVIER-STOKES VESICLE-FLUID INTERACTION MODEL

This paper is concerned with the dynamics of vesicle membranes in incompressible viscous fluids. Some rigorous theory are presented for the phase field Navier-Stokes model proposed in [7], which is based on an energetic variation approach and incorporates the effect of bending elasticity energy for the vesicle membranes. The existence and uniqueness results of the global weak solutions are established.

[1]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[2]  C. Pozrikidis,et al.  Interfacial dynamics for Stokes flow , 2001 .

[3]  R. Skalak,et al.  Motion of a tank-treading ellipsoidal particle in a shear flow , 1982, Journal of Fluid Mechanics.

[4]  Udo Seifert Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating quasispherical vesicles in shear flow , 1999 .

[5]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[6]  Qiang Du,et al.  Retrieving Topological Information for Phase Field Models , 2005, SIAM J. Appl. Math..

[7]  T. Biben,et al.  Tumbling of vesicles under shear flow within an advected-field approach. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[9]  Xiaowen Shan,et al.  Shape changes and motion of a vesicle in a fluid using a lattice Boltzmann model , 2006, physics/0607074.

[10]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[11]  Qiang Du,et al.  Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations , 2006 .

[12]  Colette Lartigue,et al.  Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. , 2002, Physical review letters.

[13]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[14]  Ou-Yang Zhong-can,et al.  Geometric methods in the elastic theory of membranes in liquid crystal phases , 1999 .

[15]  Michael H.G. Duits,et al.  Deformation of giant lipid bilayer vesicles in a shear flow , 1996 .

[16]  Ping Zhang,et al.  On hydrodynamics of viscoelastic fluids , 2005 .

[17]  Q. Du,et al.  Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches , 2006, Journal of Mathematical Biology.

[18]  Lucy T. Zhang,et al.  Coupling of Navier–Stokes equations with protein molecular dynamics and its application to hemodynamics , 2004 .

[19]  C. Pozrikidis,et al.  Numerical Simulation of the Flow-Induced Deformation of Red Blood Cells , 2003, Annals of Biomedical Engineering.

[20]  Klaus Kassner,et al.  Phase-field approach to three-dimensional vesicle dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Hiroshi Noguchi,et al.  Meshless membrane model based on the moving least-squares method. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  R. Lipowsky The morphology of lipid membranes. , 1995, Current opinion in structural biology.

[23]  Qiang Du,et al.  Modeling the spontaneous curvature effects in static cell membrane deformations by a phase field formulation , 2005 .

[24]  Qiang Du,et al.  A phase field formulation of the Willmore problem , 2005 .

[25]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[26]  Seifert,et al.  Fluid Vesicles in Shear Flow. , 1996, Physical review letters.

[27]  Udo Seifert Hydrodynamic lift on bound vesicles , 1999 .

[28]  Hiroshi Noguchi,et al.  Fluid vesicles with viscous membranes in shear flow. , 2004, Physical review letters.

[29]  T. Biben,et al.  Steady to unsteady dynamics of a vesicle in a flow. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Victor Steinberg,et al.  Orientation and dynamics of a vesicle in tank-treading motion in shear flow. , 2005, Physical review letters.