High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

[1]  T. Edvinsson,et al.  Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance , 2015 .

[2]  D. Ginger,et al.  Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells , 2015 .

[3]  J. Luther,et al.  Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal , 2015, Nature Communications.

[4]  John F. Geisz,et al.  Progress Towards a 30% Efficient GaInP/Si Tandem Solar Cell , 2015 .

[5]  Yeng Ming Lam,et al.  Elucidating the role of disorder and free-carrier recombination kinetics in CH3NH3PbI3 perovskite films , 2015, Nature Communications.

[6]  L. Kranz,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[7]  Yang Yang,et al.  The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells , 2015, Nature Communications.

[8]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[9]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[10]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[11]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[12]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[13]  Gautam Gupta,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[14]  Cinzia Giannini,et al.  Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing. , 2015, The journal of physical chemistry letters.

[15]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[16]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[17]  W. Warta,et al.  Solar cell efficiency tables (Version 45) , 2015 .

[18]  A. Petrozza,et al.  Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. , 2014, Journal of the American Chemical Society.

[19]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[20]  Oleksandr Voznyy,et al.  Materials processing routes to trap-free halide perovskites. , 2014, Nano letters.

[21]  Henry J. Snaith,et al.  Solution Deposition‐Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells , 2014 .

[22]  Giovanni Bongiovanni,et al.  Correlated electron–hole plasma in organometal perovskites , 2014, Nature Communications.

[23]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[24]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[25]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[26]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[27]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[28]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[29]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[30]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[31]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[32]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[33]  M. Grätzel,et al.  Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2013, Science.

[34]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[35]  O. Miller Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design , 2013, 1308.0212.

[36]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[37]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[38]  S. Kurtz,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2011, IEEE Journal of Photovoltaics.

[39]  Wladek Walukiewicz,et al.  Demonstration of a III–Nitride/Silicon Tandem Solar Cell , 2009 .

[40]  L. Hirst,et al.  Fundamental losses in solar cells , 2009 .

[41]  Tom Markvart,et al.  Solar cell as a heat engine: energy–entropy analysis of photovoltaic conversion , 2008 .

[42]  W. Walukiewicz,et al.  Modeling of InGaN/Si tandem solar cells , 2008 .

[43]  Christiana Honsberg,et al.  Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method , 2008 .

[44]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[45]  Takashi Jimbo,et al.  MOCVD growth of high efficiency current-matched tandem solar cell , 1997 .

[46]  R. Annan Photovoltaics. , 1985, Science.

[47]  G. Cody,et al.  Intensity enhancement in textured optical sheets for solar cells , 1982, IEEE Transactions on Electron Devices.

[48]  R. T. Ross,et al.  Some Thermodynamics of Photochemical Systems , 1967 .

[49]  A. Jen,et al.  High‐Performance Planar‐Heterojunction Solar Cells Based on Ternary Halide Large‐Band‐Gap Perovskites , 2015 .