On the small time asymptotics of scalar stochastic conservation laws

In this paper, we establish a small time large deviation principles for scalar stochastic conservation laws driven by multiplicative noise. The doubling of variables method plays a key role.

[1]  Tusheng Zhang,et al.  Large deviation principles for first-order scalar conservation laws with stochastic forcing , 2018, The Annals of Applied Probability.

[2]  A. Debussche,et al.  Scalar conservation laws with stochastic forcing , 2010, 1001.5415.

[3]  Felix Otto,et al.  Initial-boundary value problem for a scalar conservation law , 1996 .

[4]  D. Nualart,et al.  Stochastic scalar conservation laws , 2008 .

[5]  Scalar conservation laws with stochastic forcing, revised version , 2013 .

[6]  Srinivasa Varadhan,et al.  Diffusion processes in a small time interval , 1967 .

[7]  Marc Yor,et al.  Semi-martingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times , 1982 .

[8]  J. Carrillo,et al.  Scalar conservation laws with general boundary condition and continuous flux function , 2006 .

[9]  Arnaud Debussche,et al.  Invariant measure of scalar first-order conservation laws with stochastic forcing , 2013, 1310.3779.

[10]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[11]  Arnaud Debussche,et al.  A Regularity Result for Quasilinear Stochastic Partial Differential Equations of Parabolic Type , 2014, SIAM J. Math. Anal..

[12]  Tusheng Zhang,et al.  On the small time asymptotics of the two-dimensional stochastic Navier–Stokes equations , 2009 .

[13]  A. Porretta,et al.  L 1 Solutions to First Order Hyperbolic Equations in Bounded Domains , 2003 .

[14]  J. U. Kim,et al.  On a stochastic scalar conservation law , 2003 .

[15]  P. Dupuis,et al.  A variational representation for certain functionals of Brownian motion , 1998 .

[16]  Z. Dong,et al.  On the small‐time asymptotics of 3D stochastic primitive equations , 2017, Mathematical Methods in the Applied Sciences.

[17]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[18]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[19]  S. Aida,et al.  Short Time Asymptotics of a Certain Infinite Dimensional Diffusion Process , 2001 .

[20]  T. Zhang On the small time asymptotics of diffusion processes on Hilbert spaces , 2000 .

[21]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[22]  B. Davis,et al.  On the $L^p$ norms of stochastic integrals and other martingales , 1976 .

[23]  J. Ramírez,et al.  Small-time Gaussian behavior of symmetric diffusion semi-groups , 2003 .

[24]  Guy Vallet,et al.  ON A STOCHASTIC FIRST-ORDER HYPERBOLIC EQUATION IN A BOUNDED DOMAIN , 2009 .

[25]  Shizan Fang,et al.  On the small time behavior of Ornstein–Uhlenbeck processes with unbounded linear drifts , 1999 .

[26]  Tusheng Zhang,et al.  On the Small Time Asymptotics of Diffusion Processes on Path Groups , 2002 .