Super-twisting control algorithm for an Antilock Braking System

This paper proposes a robust control scheme for the Antilock Braking System (ABS). The controller is based on the Super-Twisting (ST) control algorithm, this is a high-order sliding mode controller. The ABS is nonlinear and uncertain system; therefore, a robust control method needs to be employed. The ST control algorithm is developed and applied for a quarter vehicle model via simulations. The simulation results reveal that the controller is fast in convergence and it has an adequate performance.

[1]  Chih-Min Lin,et al.  Self-learning fuzzy sliding-mode control for antilock braking systems , 2003, IEEE Trans. Control. Syst. Technol..

[2]  Katsuhiko Ogata,et al.  Ingeniería de control moderna , 1980 .

[3]  Rainer Dr Erhardt,et al.  Measurement and Simulation of Transients in Longitudinal and Lateral Tire Forces , 1990 .

[4]  Mevludin Glavic,et al.  Design of a resistive brake controller for power system stability enhancement using reinforcement learning , 2005, IEEE Transactions on Control Systems Technology.

[5]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[6]  Yuen-Kwok Chin,et al.  Vehicle Traction Control: Variable-Structure Control Approach , 1991 .

[7]  Zhiqiang Gao,et al.  An application of nonlinear PID control to a class of truck ABS problems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[8]  Gilberto Reynoso-Meza,et al.  Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas , 2013 .

[9]  Zhiqiang Gao,et al.  An adaptive nonlinear filter approach to the vehicle velocity estimation for ABS , 2000, Proceedings of the 2000. IEEE International Conference on Control Applications. Conference Proceedings (Cat. No.00CH37162).

[10]  Robin S. Sharp Application of optimal preview control to speed-tracking of road vehicles , 2007 .

[11]  Shiuh-Jer Huang,et al.  Adaptive fuzzy controller with sliding surface for vehicle suspension control , 2003, IEEE Trans. Fuzzy Syst..

[12]  Shouchuan Hu Differential equations with discontinuous right-hand sides☆ , 1991 .

[13]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[14]  Leonid M. Fridman,et al.  Optimal Lyapunov function selection for reaching time estimation of Super Twisting algorithm , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[15]  A. Aghagolzadeh,et al.  Designing a Sliding Mode Controller for Antilock Brake System , 2005, EUROCON 2005 - The International Conference on "Computer as a Tool".

[16]  Okyay Kaynak,et al.  A Dynamic Method to Forecast the Wheel Slip for Antilock Braking System and Its Experimental Evaluation , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  H. T,et al.  The future of PID control , 2001 .

[18]  Yuri B. Shtessel,et al.  Higher order sliding modes , 2008 .

[19]  Ramon Vilanova,et al.  Control PID robusto: Una visión panorámica , 2011 .