Impact of geometry on the performance of memristive nanodevices

We examined the influence of memristor geometry on switching endurance by comparing ribbed and planar TiO(2)-based cross-point devices with 50 nm × 50 nm lateral dimensions. We observed that planar devices exhibited a factor of over four improvement in median endurance value over ribbed structures for otherwise identical structures. Our simulations indicated that the corners in the upper wires of the ribbed devices experienced higher current density and more heating during device forming and switching, and hence a shorter life time.

[1]  D. Cahill,et al.  Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings , 1994 .

[2]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[3]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[4]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[5]  M. Stamate Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system , 2000 .

[6]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[7]  Zhiqun Lin,et al.  Anisotropic thermal transport in highly ordered TiO2 nanotube arrays , 2009 .

[8]  U-In Chung,et al.  Improvement of resistive memory switching in NiO using IrO2 , 2006 .

[9]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[10]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[11]  S. Haddad,et al.  Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory , 2008 .

[12]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[13]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[14]  J. A. Liddle,et al.  One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography , 2005 .

[15]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[16]  J. Yang,et al.  High switching endurance in TaOx memristive devices , 2010 .

[17]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[18]  Qiangfei Xia,et al.  Nanoscale resistive switches: devices, fabrication and integration , 2011 .

[19]  Switching processes and dielectric breakdown in polycrystalline Nb2O5 films , 1976 .

[20]  Qiangfei Xia,et al.  Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. , 2010, Nano letters.

[21]  G. Snider,et al.  Self-organized computation with unreliable, memristive nanodevices , 2007 .

[22]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[23]  Xinman Chen,et al.  Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications , 2008 .