Stochastic modelling, Bayesian inference, and new in vivo measurements elucidate the debated mtDNA bottleneck mechanism

Dangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms. Using approximate Bayesian computation and mouse data, we find most statistical support for a combination of binomial partitioning of mtDNAs at cell divisions and random mtDNA turnover, meaning that the debated exact magnitude of mtDNA copy number depletion is flexible. New experimental measurements from a wild-derived mtDNA pairing in mice confirm the theoretical predictions of this model. We analytically solve a mathematical description of this mechanism, computing probabilities of mtDNA disease onset, efficacy of clinical sampling strategies, and effects of potential dynamic interventions, thus developing a quantitative and experimentally-supported stochastic theory of the bottleneck. DOI: http://dx.doi.org/10.7554/eLife.07464.001

[1]  B. Levy,et al.  Blastocyst preimplantation genetic diagnosis (PGD) of a mitochondrial DNA disorder. , 2012, Fertility and sterility.

[2]  David C Samuels,et al.  A model of the nuclear control of mitochondrial DNA replication. , 2003, Journal of theoretical biology.

[3]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[4]  A. Munnich,et al.  Segregation of mtDNA Throughout Human Embryofetal Development: m.3243A > G as a Model System , 2010, Human mutation.

[5]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[6]  Louis Brand,et al.  A Sequence Defined by a Difference Equation , 1955 .

[7]  Y. Peterson,et al.  Ceramide targets autophagosomes to mitochondria and induces lethal mitophagy , 2012, Nature chemical biology.

[8]  Martin H. Johnson,et al.  Variations in mouse mitochondrial DNA copy number from fertilization to birth are associated with oxidative stress. , 2008, Reproductive biomedicine online.

[9]  A. Munnich,et al.  Analysis of mtDNA variant segregation during early human embryonic development: a tool for successful NARP preimplantation diagnosis , 2005, Journal of Medical Genetics.

[10]  E. Wolf,et al.  Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning , 2000, Nature Genetics.

[11]  M. Gutmann,et al.  Approximate Bayesian Computation , 2012 .

[12]  Iain G Johnston,et al.  Efficient parametric inference for stochastic biological systems with measured variability , 2014, Statistical applications in genetics and molecular biology.

[13]  Markus Kollmann,et al.  Quantifying origins of cell-to-cell variations in gene expression. , 2008, Biophysical journal.

[14]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[15]  D. Wallace,et al.  Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. , 2013, Cold Spring Harbor perspectives in biology.

[16]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[17]  O. Shirihai,et al.  Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. , 2008, Biochimica et biophysica acta.

[18]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Turnbull,et al.  Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. , 2001, American journal of human genetics.

[20]  Iain G. Johnston,et al.  Mitochondrial DNA disease and developmental implications for reproductive strategies , 2014, Molecular human reproduction.

[21]  N. Camougrand,et al.  Glutathione participates in the regulation of mitophagy in yeast , 2009, Autophagy.

[22]  E. Shoubridge,et al.  The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes , 2008, Nature Genetics.

[23]  P. Chinnery,et al.  Relaxed replication of mtDNA: A model with implications for the expression of disease. , 1999, American journal of human genetics.

[24]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[25]  C. Moraes,et al.  Specific elimination of mutant mitochondrial genomes in patient–derived cells by mitoTALENs , 2013, Nature Medicine.

[26]  Iain G. Johnston,et al.  Mitochondrial Variability as a Source of Extrinsic Cellular Noise , 2011, PLoS Comput. Biol..

[27]  H. Yonekawa,et al.  New Evidence Confirms That the Mitochondrial Bottleneck Is Generated without Reduction of Mitochondrial DNA Content in Early Primordial Germ Cells of Mice , 2009, PLoS genetics.

[28]  David C Samuels,et al.  A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes , 2008, Nature Genetics.

[29]  V. Macaulay,et al.  Evidence from human oocytes for a genetic bottleneck in an mtDNA disease. , 1998, American journal of human genetics.

[30]  D. Turnbull,et al.  Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. , 1997, Trends in genetics : TIG.

[31]  A. Munnich,et al.  Mutation dependance of the mitochondrial DNA copy number in the first stages of human embryogenesis. , 2013, Human molecular genetics.

[32]  Jean-Pierre Mazat,et al.  Mitochondrial threshold effects. , 2003, The Biochemical journal.

[33]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[34]  Takahiko Hara,et al.  The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells , 2007, Nature Genetics.

[35]  O. Shirihai,et al.  The interplay between mitochondrial dynamics and mitophagy. , 2011, Antioxidants & redox signaling.

[36]  Suresh Kumar Poovathingal,et al.  Stochastic Drift in Mitochondrial DNA Point Mutations: A Novel Perspective Ex Silico , 2009, PLoS Comput. Biol..

[37]  M Kimura,et al.  SOLUTION OF A PROCESS OF RANDOM GENETIC DRIFT WITH A CONTINUOUS MODEL. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Bredenoord,et al.  Ooplasmic and nuclear transfer to prevent mitochondrial DNA disorders: conceptual and normative issues. , 2008, Human reproduction update.

[39]  S. Mitalipov,et al.  Rapid mitochondrial DNA segregation in primate preimplantation embryos precedes somatic and germline bottleneck. , 2012, Cell reports.

[40]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[41]  D. Rand THE UNITS OF SELECTION ON MITOCHONDRIAL DNA , 2001 .

[42]  Iain G. Johnston,et al.  Closed-form stochastic solutions for non-equilibrium dynamics and inheritance of cellular components over many cell divisions , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  D. Wallace Mitochondrial diseases in man and mouse. , 1999, Science.

[44]  David C Samuels,et al.  The distribution of mitochondrial DNA heteroplasmy due to random genetic drift. , 2008, American journal of human genetics.

[45]  Carl T. Bergstrom,et al.  Germline bottlenecks and the evolutionary maintenance of mitochondrial genomes. , 1998, Genetics.

[46]  D. Chan,et al.  Functions and dysfunctions of mitochondrial dynamics , 2007, Nature Reviews Molecular Cell Biology.

[47]  O. Shirihai,et al.  Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. , 2009, Biophysical journal.

[48]  B. Nelson,et al.  Detection of heteroplasmy in individual mitochondrial particles , 2010, Analytical and bioanalytical chemistry.

[49]  J. Lancaster,et al.  Integration of cellular bioenergetics with mitochondrial quality control and autophagy , 2012, Biological chemistry.

[50]  E. Schon,et al.  Mitochondrial nucleoids maintain genetic autonomy but allow for functional complementation , 2008, The Journal of cell biology.

[51]  S. Boissinot,et al.  Evolutionary Biology , 2000, Evolutionary Biology.

[52]  J. Drost,et al.  Biological basis of germline mutation: Comparisons of spontaneous germline mutation rates among drosophila, mouse, and human , 1995, Environmental and molecular mutagenesis.

[53]  Daniel J. White,et al.  The Strength and Timing of the Mitochondrial Bottleneck in Salmon Suggests a Conserved Mechanism in Vertebrates , 2011, PloS one.

[54]  D. Wells,et al.  Transmission of Mitochondrial DNA Diseases and Ways to Prevent Them , 2010, PLoS genetics.

[55]  张静,et al.  Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening , 2015 .

[56]  J. Esplugues,et al.  Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival‐promoting autophagy , 2011, Hepatology.

[57]  P. Chinnery,et al.  Reassessing evidence for a postnatal mitochondrial genetic bottleneck , 2010, Nature Genetics.

[58]  Iain G. Johnston,et al.  MtDNA segregation in heteroplasmic tissues is common in vivo and modulated by haplotype differences and developmental stage. , 2014, Cell reports.

[59]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[60]  Patrick F Chinnery,et al.  Pronuclear transfer in human embryos to prevent transmission of mitochondrial DNA disease , 2010, Nature.

[61]  E. Shoubridge,et al.  Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA , 1996, Nature Genetics.

[62]  E. Schon,et al.  Mitophagy in cells with mtDNA mutations , 2012, Autophagy.

[63]  C. Kukat,et al.  mtDNA makes a U-turn for the mitochondrial nucleoid. , 2013, Trends in cell biology.

[64]  Iain G. Johnston,et al.  What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research , 2015, BioEssays : news and reviews in molecular, cellular and developmental biology.

[65]  D. Egli,et al.  Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants , 2012, Nature.

[66]  S. Mitalipov,et al.  Towards germline gene therapy of inherited mitochondrial diseases , 2012, Nature.

[67]  D. Bogenhagen Mitochondrial DNA nucleoid structure. , 2012, Biochimica et biophysica acta.

[68]  J. Nunnari,et al.  Mitochondria: In Sickness and in Health , 2012, Cell.

[69]  P. Chinnery,et al.  Previous estimates of mitochondrial DNA mutation level variance did not account for sampling error: comparing the mtDNA genetic bottleneck in mice and humans. , 2010, American journal of human genetics.

[70]  H. Coller,et al.  Cell-by-cell scanning of whole mitochondrial genomes in aged human heart reveals a significant fraction of myocytes with clonally expanded deletions. , 1999, Nucleic acids research.

[71]  K. Lawson,et al.  Clonal analysis of the origin of primordial germ cells in the mouse. , 2007, Ciba Foundation symposium.

[72]  S. Jakobs,et al.  Super-resolution microscopy of mitochondria. , 2014, Current opinion in chemical biology.

[73]  V. Beneš,et al.  The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. , 2009, Clinical chemistry.

[74]  Daehee Hwang,et al.  A Systems Approach for Decoding Mitochondrial Retrograde Signaling Pathways , 2013, Science Signaling.

[75]  D. Wells,et al.  Preventing transmission of maternally inherited mitochondrial DNA diseases , 2009, BMJ : British Medical Journal.

[76]  H. Jacobs,et al.  No sex please, we're mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.