2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications

Author(s): Lin, Z; McCreary, A; Briggs, N; Subramanian, S; Zhang, K; Sun, Y; Li, X; Borys, NJ; Yuan, H; Fullerton-Shirey, SK; Chernikov, A; Zhao, H; McDonnell, S; Lindenberg, AM; Xiao, K; Le Roy, BJ; Drndic, M; Hwang, JCM; Park, J; Chhowalla, M; Schaak, RE; Javey, A; Hersam, MC; Robinson, J; Terrones, M | Abstract: © 2016 IOP Publishing Ltd. The rise of two-dimensional (2D) materials research took place following the isolation of graphene in 2004. These new 2D materials include transition metal dichalcogenides, mono-elemental 2D sheets, and several carbide- and nitride-based materials. The number of publications related to these emerging materials has been drastically increasing over the last five years. Thus, through this comprehensive review, we aim to discuss the most recent groundbreaking discoveries as well as emerging opportunities and remaining challenges. This review starts out by delving into the improved methods of producing these new 2D materials via controlled exfoliation, metal organic chemical vapor deposition, and wet chemical means. We look into recent studies of doping as well as the optical properties of 2D materials and their heterostructures. Recent advances towards applications of these materials in 2D electronics are also reviewed, and include the tunnel MOSFET and ways to reduce the contact resistance for fabricating high-quality devices. Finally, several unique and innovative applications recently explored are discussed as well as perspectives of this exciting and fast moving field.

[1]  Linfeng Sun,et al.  Ultrafast carrier thermalization and cooling dynamics in few-layer MoS2. , 2014, ACS nano.

[2]  A. Wodtke,et al.  Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics , 2014, Science.

[3]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[4]  K. Banerjee,et al.  High-Performance Field-Effect-Transistors On Monolayer-WSe2 , 2013 .

[5]  Hongtao Yuan,et al.  Zeeman-type spin splitting controlled by an electric field , 2013, Nature Physics.

[6]  Carl W. Magnuson,et al.  Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. , 2012, ACS nano.

[7]  Yi Shi,et al.  Generalized Low-Temperature Fabrication of Scalable Multi-Type Two-Dimensional Nanosheets with a Green Soft Template. , 2016, Chemistry.

[8]  S. Boettcher,et al.  Efficient n-GaAs photoelectrodes grown by close-spaced vapor transport from a solid source. , 2012, ACS applied materials & interfaces.

[9]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[10]  M. Engel,et al.  High-Performance p-Type Black Phosphorus Transistor with Scandium Contact. , 2016, ACS nano.

[11]  Roman Engel-Herbert,et al.  Phase stabilization of VO2 thin films in high vacuum , 2015 .

[12]  D. Akinwande,et al.  Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. , 2015, Nano letters.

[13]  S. Banerjee,et al.  Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS₂ Grown by Vapor Transport. , 2016, ACS nano.

[14]  B. Lotsch Vertical 2D Heterostructures , 2015 .

[15]  Ying-Sheng Huang,et al.  Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers , 2013, Nature Communications.

[16]  D. Akinwande,et al.  Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. , 2015, Nano letters.

[17]  V. Dravid,et al.  Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei. , 2016, ACS nano.

[18]  Sang Hoon Chae,et al.  Phase-Engineered Synthesis of Centimeter-Scale 1T'- and 2H-Molybdenum Ditelluride Thin Films. , 2015, ACS nano.

[19]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[20]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[21]  Wang Yao,et al.  Valley-dependent optoelectronics from inversion symmetry breaking , 2007, 0705.4683.

[22]  Miaofang Chi,et al.  Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. , 2015, ACS nano.

[23]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[24]  Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials. , 2016, ACS nano.

[25]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[26]  Yifan Sun,et al.  Low-Temperature Solution Synthesis of Few-Layer 1T '-MoTe2 Nanostructures Exhibiting Lattice Compression. , 2016, Angewandte Chemie.

[27]  Yi Cui,et al.  Physical and chemical tuning of two-dimensional transition metal dichalcogenides. , 2015, Chemical Society reviews.

[28]  Sergey Ganichev,et al.  Spin photocurrents in quantum wells , 2003 .

[29]  Jean-Christophe Charlier,et al.  Identification of individual and few layers of WS2 using Raman Spectroscopy , 2013, Scientific Reports.

[30]  Peter Wasserscheid,et al.  Ionic Liquids for Electrolyte-Gating of ZnO Field-Effect Transistors , 2012 .

[31]  P. Jarillo-Herrero,et al.  Control over topological insulator photocurrents with light polarization. , 2011, Nature nanotechnology.

[32]  Hsin-Ying Chiu,et al.  Electron transfer and coupling in graphene–tungsten disulfide van der Waals heterostructures , 2014, Nature Communications.

[33]  Kyle Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2014, PloS one.

[34]  Qinsheng Wang,et al.  Coherent Longitudinal Acoustic Phonon Approaching THz Frequency in Multilayer Molybdenum Disulphide , 2014, Scientific Reports.

[35]  Aaron T. Kuan,et al.  Electrical pulse fabrication of graphene nanopores in electrolyte solution. , 2015, Applied physics letters.

[36]  H. Sawada,et al.  Exciton mapping at subwavelength scales in two-dimensional materials. , 2015, Physical review letters.

[37]  I. Ivanov,et al.  Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors , 2015, Nature Communications.

[38]  Dong Wang,et al.  Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. , 2013, ACS nano.

[39]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[40]  Christopher J. Brennan,et al.  A review on mechanics and mechanical properties of 2D materials—Graphene and beyond , 2016, 1611.01555.

[41]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[42]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[43]  J. Misewich,et al.  Superconductor–insulator transition in La2 − xSrxCuO4 at the pair quantum resistance , 2011, Nature.

[44]  Naomi J. Halas,et al.  Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells , 2014 .

[45]  John Robertson,et al.  Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .

[46]  Moon J. Kim,et al.  Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. , 2015, ACS nano.

[47]  P. D. Ye,et al.  Continuous-wave and transient characteristics of phosphorene microwave transistors , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[48]  N. Chen,et al.  Decrease of dislocations in GaAs by isoelectronic doping of liquid phase epitaxial layers , 1995 .

[49]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[50]  Yu‐Chuan Lin Atomically Thin Resonant Tunnel Diodes , 2018 .

[51]  D. Akinwande,et al.  Pressure-Modulated Conductivity, Carrier Density, and Mobility of Multilayered Tungsten Disulfide. , 2015, ACS nano.

[52]  Madan Dubey,et al.  Silicene field-effect transistors operating at room temperature. , 2015, Nature nanotechnology.

[53]  C. Hu,et al.  2 D-2 D tunneling field-effect transistors using WSe 2 / SnSe 2 heterostructures , 2016 .

[54]  M. I. Katsnelson,et al.  Graphene: New bridge between condensed matter physics and quantum electrodynamics , 2007, cond-mat/0703374.

[55]  O. Prezhdo,et al.  Quantum Coherence Facilitates Efficient Charge Separation at a MoS2/MoSe2 van der Waals Junction. , 2016, Nano letters.

[56]  S. Koester,et al.  Black Phosphorus p-MOSFETs With 7-nm HfO2 Gate Dielectric and Low Contact Resistance , 2015, IEEE Electron Device Letters.

[57]  G. Duscher,et al.  Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2 , 2017 .

[58]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[59]  Arturo Ponce,et al.  Thickness sorting of two-dimensional transition metal dichalcogenides via copolymer-assisted density gradient ultracentrifugation , 2014, Nature Communications.

[60]  Li Tao,et al.  Toward air-stable multilayer phosphorene thin-films and transistors , 2014, Scientific Reports.

[61]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[62]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[63]  X. Duan,et al.  Growth of alloy MoS(2x)Se2(1-x) nanosheets with fully tunable chemical compositions and optical properties. , 2014, Journal of the American Chemical Society.

[64]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[65]  Zi Jing Wong,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[66]  L. Reimer Transmission Electron Microscopy: Physics of Image Formation and Microanalysis , 1989 .

[67]  Qiang Sun,et al.  Unravelling orientation distribution and merging behavior of monolayer MoS2 domains on sapphire. , 2015, Nano letters.

[68]  Huilong Xu,et al.  Reconfigurable Ion Gating of 2H-MoTe2 Field-Effect Transistors Using Poly(ethylene oxide)-CsClO4 Solid Polymer Electrolyte. , 2015, ACS nano.

[69]  C. Soci,et al.  Dichroic spin–valley photocurrent in monolayer molybdenum disulphide , 2015, Nature Communications.

[70]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[71]  Jonas Björk,et al.  Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene : Retaining an effective primitive cell band structure by band unfolding , 2014 .

[72]  C. Battaglia,et al.  MoS 2 P ‐ type Transistors and Diodes Enabled by High Work Function MoO x Contacts , 2014 .

[73]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[74]  A. Green,et al.  Solution phase production of graphene with controlled thickness via density differentiation. , 2009, Nano letters.

[75]  D. Geohegan,et al.  Persistent photoconductivity in two-dimensional Mo_1−xW_xSe_2–MoSe_2 van der Waals heterojunctions , 2016 .

[76]  Jian Zhu,et al.  Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets. , 2015, Nano letters.

[77]  Valley excitons in two-dimensional semiconductors , 2015, 1507.08103.

[78]  Sefaattin Tongay,et al.  Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide , 2015, Nature Communications.

[79]  Dimitri D. Vaughn,et al.  A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: the case of SnSe. , 2011, ACS nano.

[80]  Tobin J Marks,et al.  Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2. , 2016, Nano letters.

[81]  M. Hersam,et al.  Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. , 2016, ACS nano.

[82]  Madan Dubey,et al.  Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition , 2014, Nature Communications.

[83]  M. Hersam,et al.  Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics. , 2015, The journal of physical chemistry letters.

[84]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[85]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[86]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[87]  Yanlong Wang,et al.  Raman spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. , 2013, Small.

[88]  Heejun Yang Phase Engineering of Transition-Metal Dichalcogenides , 2016 .

[89]  L. Kavan,et al.  Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering. , 2015, Nano letters.

[90]  J. Cheon,et al.  Synthesis and structural transformations of colloidal 2D layered metal chalcogenide nanocrystals. , 2013, Chemical Society reviews.

[91]  E. Reed,et al.  Ultrafast electronic and structural response of monolayer MoS2 under intense photoexcitation conditions. , 2014, ACS nano.

[92]  Ning Lu,et al.  Direct synthesis of van der Waals solids. , 2014, ACS nano.

[93]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[94]  D. Muller,et al.  Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment. , 2015, Nano letters.

[95]  H. L. Johnston,et al.  The Vaporization of Molybdenum and Tungsten Oxides , 1958 .

[96]  Dong-Hun Chae,et al.  Coherent Lattice Vibrations in Mono- and Few-Layer WSe2. , 2016, ACS nano.

[97]  G. Salitra,et al.  Nested fullerene-like structures , 1993, Nature.

[98]  B. Yakobson,et al.  Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. , 2014, Nanoscale.

[99]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[100]  M. Hersam,et al.  Layer‐by‐Layer Assembled 2D Montmorillonite Dielectrics for Solution‐Processed Electronics , 2016, Advanced materials.

[101]  Zhixian Zhou,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[102]  Kenji Watanabe,et al.  Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. , 2015, Nano letters.

[103]  P. Ajayan,et al.  A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.

[104]  T. Heinz,et al.  Probing the Dynamics of the Metallic-to-Semiconducting Structural Phase Transformation in MoS2 Crystals. , 2015, Nano letters.

[105]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[106]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[107]  K. Akimoto,et al.  Molecular beam epitaxy of GaN on a substrate of MoS2 layered compound , 1999 .

[108]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[109]  D. F. Ogletree,et al.  Revealing Optical Properties of Reduced‐Dimensionality Materials at Relevant Length Scales , 2015, Advanced materials.

[110]  Mauricio Terrones,et al.  Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides , 2013, Scientific Reports.

[111]  Nan Wang,et al.  Manganese Doping of Monolayer MoS2: The Substrate Is Critical. , 2015, Nano letters.

[112]  Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. , 2014, Nano letters.

[113]  R. Gruehn,et al.  Developments in Measuring and Calculating Chemical Vapor Transport Phenomena Demonstrated on Cr, Mo, W, and Their Compounds. , 1997, Chemical reviews.

[114]  A. R. Jani,et al.  High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method , 2004 .

[115]  C. A. Nelson,et al.  Correction to "charge transfer excitons at van der Waals interfaces". , 2015, Journal of the American Chemical Society.

[116]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[117]  Zhigang Shuai,et al.  Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction. , 2014, The journal of physical chemistry letters.

[118]  Kazuki Yoshimura,et al.  Ultrasharp interfaces grown with Van der Waals epitaxy , 1986 .

[119]  Xiang Zhang,et al.  Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. , 2016, Nature nanotechnology.

[120]  Kuan-Hua Huang,et al.  Synthesis of lateral heterostructures of semiconducting atomic layers. , 2015, Nano letters.

[121]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[122]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[123]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[124]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[125]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[126]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[127]  A. Mohite,et al.  Phase engineering of transition metal dichalcogenides. , 2015, Chemical Society reviews.

[128]  Z. Qi,et al.  Photoluminescence of monolayer MoS2 on LaAlO3 and SrTiO3 substrates. , 2014, Nanoscale.

[129]  S. D. Ganichev,et al.  Spin-galvanic effect , 2002, Nature.

[130]  Jingyu Sun,et al.  Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. , 2014, ACS nano.

[131]  Moon J. Kim,et al.  HfO2 on UV–O3 exposed transition metal dichalcogenides: interfacial reactions study , 2015 .

[132]  Huili Grace Xing,et al.  Layered transition metal dichalcogenides: promising near-lattice-matched substrates for GaN growth , 2015, Scientific Reports.

[133]  Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors , 2011 .

[134]  Gautam Gupta,et al.  The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. , 2016, Nature materials.

[135]  Andras Kis,et al.  Electron and hole mobilities in single-layer WSe2. , 2014, ACS nano.

[136]  Hsin-Ying Chiu,et al.  Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide , 2012, 1206.6055.

[137]  Mark C Hersam Defects at the Two-Dimensional Limit. , 2015, The journal of physical chemistry letters.

[138]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[139]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[140]  H. Kuo,et al.  Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. , 2016, ACS nano.

[141]  Stephan W Koch,et al.  Quantum theory of the optical and electronic properties of semiconductors, fifth edition , 2009 .

[142]  Ultrahigh Pressure Superconductivity in Molybdenum Disulfide , 2015, 1503.05331.

[143]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[144]  Y. J. Zhang,et al.  Electrically Switchable Chiral Light-Emitting Transistor , 2014, Science.

[145]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[146]  Arka Majumdar,et al.  Monolayer semiconductor nanocavity lasers with ultralow thresholds , 2015, Nature.

[147]  M. Wanunu,et al.  Direct and Scalable Deposition of Atomically Thin Low-Noise MoS2 Membranes on Apertures. , 2015, ACS nano.

[148]  Qing Zhao,et al.  Boron Nitride Nanopores: Highly Sensitive DNA Single‐Molecule Detectors , 2013, Advanced materials.

[149]  Eva A. A. Pogna,et al.  Exciton and charge carrier dynamics in few-layer WS2. , 2016, Nanoscale.

[150]  S. Luo,et al.  Effect of Pressure and Temperature on Structural Stability of MoS2 , 2014 .

[151]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[152]  Xiao-Guang Sun,et al.  Li+ transport in poly(ethylene oxide) based electrolytes: neutron scattering, dielectric spectroscopy, and molecular dynamics simulations. , 2013, Physical review letters.

[153]  M. Hersam,et al.  Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. , 2015, ACS nano.

[154]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[155]  Ming C. Wu,et al.  Engineering light outcoupling in 2D materials. , 2015, Nano letters.

[156]  A. Centeno,et al.  Photoexcitation cascade and multiple hot-carrier generation in graphene , 2012, Nature Physics.

[157]  M I Katsnelson,et al.  Intrinsic ripples in graphene. , 2007, Nature materials.

[158]  L. Francis,et al.  Gravure Printing of Graphene for Large‐area Flexible Electronics , 2014, Advanced materials.

[159]  E. M. Lifshitz,et al.  Statistical physics. Pt.1, Pt.2 , 1980 .

[160]  Hongtao Yuan,et al.  Discovery of superconductivity in KTaO₃ by electrostatic carrier doping. , 2011, Nature nanotechnology.

[161]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[162]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[163]  Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides. , 2000, cond-mat/0012147.

[164]  R. Hennig,et al.  Single-Layer Group-III Monochalcogenide Photocatalysts for Water Splitting , 2013 .

[165]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[166]  A. Wee,et al.  Van der Waals stacked 2D layered materials for optoelectronics , 2016 .

[167]  Hidekazu Shimotani,et al.  Liquid-gated electric-double-layer transistor on layered metal dichalcogenide, SnS2 , 2011 .

[168]  Michael E. Flatté,et al.  Challenges for semiconductor spintronics , 2007 .

[169]  C. Hu,et al.  2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures , 2016 .

[170]  A. Balan,et al.  Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. , 2013, ACS nano.

[171]  Wei Liu,et al.  A computational study of metal-contacts to beyond-graphene 2D semiconductor materials , 2012, 2012 International Electron Devices Meeting.

[172]  Xiaodong Li,et al.  Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides , 2014, 1406.4569.

[173]  C. Robert,et al.  Spin-orbit engineering in transition metal dichalcogenide alloy monolayers , 2015, Nature Communications.

[174]  J. McGilp,et al.  Soft X-ray photoemission spectroscopy of metal-molybdenum bisulphide interfaces , 1985 .

[175]  M. Hersam,et al.  Inkjet Printing of High Conductivity, Flexible Graphene Patterns. , 2013, The journal of physical chemistry letters.

[176]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[177]  D. Geohegan,et al.  Isoelectronic Tungsten Doping in Monolayer MoSe2 for Carrier Type Modulation , 2016, Advanced materials.

[178]  Robert M. Wallace,et al.  MoS2-Titanium Contact Interface Reactions. , 2016, ACS applied materials & interfaces.

[179]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[180]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[181]  Ke Liu,et al.  Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. , 2014, ACS nano.

[182]  D. Awschalom,et al.  Lateral drag of spin coherence in gallium arsenide , 1999, Nature.

[183]  Alan Seabaugh,et al.  Ultimate thin vertical p–n junction composed of two-dimensional layered molybdenum disulfide , 2015, Nature communications.

[184]  Linfeng Sun,et al.  Monolayers of WxMo1−xS2 alloy heterostructure with in-plane composition variations , 2015 .

[185]  A. Seabaugh,et al.  Electric-double-layer doping of WSe2 field-effect transistors using polyethylene-oxide cesium perchlorate , 2016 .

[186]  C. Daniel Frisbie,et al.  Organic Electronics: Printed, sub‐2V ZnO Electrolyte Gated Transistors and Inverters on Plastic (Adv. Mater. 25/2013) , 2013 .

[187]  Hongtao Yuan,et al.  Pressure induced metallization with absence of structural transition in layered molybdenum diselenide , 2015, Nature Communications.

[188]  Marija Drndic,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008 .

[189]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[190]  Se Hyun Kim,et al.  Electrolyte‐Gated Transistors for Organic and Printed Electronics , 2013, Advanced materials.

[191]  E. Hwang,et al.  Probing Out-of-Plane Charge Transport in Black Phosphorus with Graphene-Contacted Vertical Field-Effect Transistors. , 2016, Nano letters.

[192]  Mark C Hersam,et al.  The reemergence of chemistry for post-graphene two-dimensional nanomaterials. , 2015, ACS nano.

[193]  Tobin J Marks,et al.  Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. , 2015, Nano letters.

[194]  S. An,et al.  A Van Der Waals Homojunction: Ideal p–n Diode Behavior in MoSe2 , 2015, Advanced materials.

[195]  G. Ryu,et al.  Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer , 2015, Nature Communications.

[196]  P. Ajayan,et al.  Chemical vapor deposition growth of crystalline monolayer MoSe2. , 2014, ACS nano.

[197]  Shoji Yoshida,et al.  Microscopic basis for the band engineering of Mo1−xWxS2-based heterojunction , 2015, Scientific Reports.

[198]  M. Dresselhaus,et al.  Controlled Sculpture of Black Phosphorus Nanoribbons. , 2016, ACS nano.

[199]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[200]  G. Ozin,et al.  Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. , 2014, Journal of the American Chemical Society.

[201]  N. Peres,et al.  Graphene bilayer with a twist: electronic structure. , 2007, Physical review letters.

[202]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[203]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[204]  Le Cai,et al.  Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. , 2015, ACS nano.

[205]  M. Raschke,et al.  Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. , 2016, Nano letters.

[206]  Suyeon Cho,et al.  Bandgap opening in few-layered monoclinic MoTe2 , 2015, Nature Physics.

[207]  J. Myoung,et al.  Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. , 2013, ACS nano.

[208]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[209]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[210]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[211]  K Watanabe,et al.  Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere. , 2015, Nano letters.

[212]  Point Defects and Grain Boundaries in Rotationally Commensurate MoS2 on Epitaxial Graphene , 2016, 1604.00682.

[213]  A. Seabaugh,et al.  Atomic Layer Deposition of Al2O3 on WSe2 Functionalized by Titanyl Phthalocyanine. , 2016, ACS Nano.

[214]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[215]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[216]  K. Mak,et al.  Real-time observation of interlayer vibrations in bilayer and few-layer graphene. , 2013, Nano letters.

[217]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[218]  A. Balan,et al.  Suspended Solid-state Membranes on Glass Chips with Sub 1-pF Capacitance for Biomolecule Sensing Applications , 2015, Scientific Reports.

[219]  Farhan Rana,et al.  High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenideMoS2 , 2014, 1408.2562.

[220]  Bin Liu,et al.  Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2 thin films , 2013 .

[221]  Madan Dubey,et al.  Gold‐Mediated Exfoliation of Ultralarge Optoelectronically‐Perfect Monolayers , 2016, Advanced materials.

[222]  M. Lorke,et al.  Two-Dimensional Heterojunctions from Nonlocal Manipulations of the Interactions. , 2016, Nano letters.

[223]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[224]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[225]  Mark C Hersam,et al.  Chemically Tailoring Semiconducting Two-Dimensional Transition Metal Dichalcogenides and Black Phosphorus. , 2016, ACS nano.

[226]  P. Taheri,et al.  Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. , 2016, Nano letters.

[227]  N. D. Mermin,et al.  Crystalline Order in Two Dimensions , 1968 .

[228]  Alexey Chernikov,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014 .

[229]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[230]  M. Raschke,et al.  Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids , 2012 .

[231]  C. Gies,et al.  Influence of excited carriers on the optical and electronic properties of MoS₂. , 2014, Nano letters.

[232]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[233]  Woo Jin Hyun,et al.  High‐Resolution Patterning of Graphene by Screen Printing with a Silicon Stencil for Highly Flexible Printed Electronics , 2015, Advanced materials.

[234]  A. Splendiani,et al.  Emerging Photoluminescence in Monolayer , 2010 .

[235]  J. Su,et al.  Tuning the electronic properties of Ti-MoS2 contacts through introducing vacancies in monolayer MoS2. , 2015, Physical chemistry chemical physics : PCCP.

[236]  Eric Pop,et al.  Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. , 2016, Nano letters.

[237]  Wei Bao,et al.  Mapping Local Charge Recombination Heterogeneity by Multidimensional Nanospectroscopic Imaging , 2012, Science.

[238]  J. Miyazaki,et al.  Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating , 2015, Scientific Reports.

[239]  Xiaoli Huang,et al.  Interlayer Coupling Affected Structural Stability in Ultrathin MoS2: An Investigation by High Pressure Raman Spectroscopy , 2016 .

[240]  John L. Hutchison,et al.  Bulk Synthesis of Inorganic Fullerene-like MS2 (M = Mo, W) from the Respective Trioxides and the Reaction Mechanism , 1996 .

[241]  E. Haller,et al.  Compliant substrate epitaxy: Au on MoS 2 , 2015, 1505.07505.

[242]  Xiaoli Huang,et al.  Pressure confinement effect in MoS2 monolayers. , 2015, Nanoscale.

[243]  J. Crain,et al.  Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. , 2016, Nanoscale.

[244]  J. Cheon,et al.  Colloidal synthesis of single-layer MSe2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach. , 2015, Journal of the American Chemical Society.

[245]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[246]  Kenji Watanabe,et al.  Gate tunable quantum oscillations in air-stable and high mobility few-layer phosphorene heterostructures , 2014, 1412.0717.

[247]  Alexey Chernikov,et al.  Electrical Tuning of Exciton Binding Energies in Monolayer WS_{2}. , 2015, Physical review letters.

[248]  D. Fu,et al.  Modulating Photoluminescence of Monolayer Molybdenum Disulfide by Metal-Insulator Phase Transition in Active Substrates. , 2016, Small.

[249]  H. Fjellvåg,et al.  Growth of thin films of molybdenum oxide by atomic layer deposition , 2011 .

[250]  Yunseok Kim,et al.  Room Temperature Semiconductor-Metal Transition of MoTe2 Thin Films Engineered by Strain. , 2016, Nano letters.

[251]  Jing Guo,et al.  Dual-GatedMoS 2 / WSe 2 van derWaals Tunnel Diodes and Transistors , 2015 .

[252]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[253]  E. Reed,et al.  Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers , 2014, Nature Communications.

[254]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[255]  Q. Cui,et al.  Exciton formation in monolayer transition metal dichalcogenides. , 2016, Nanoscale.

[256]  R. Gordon,et al.  Highly Conformal Thin Films of Tungsten Nitride Prepared by Atomic Layer Deposition from a Novel Precursor , 2003 .

[257]  Anna C. Domask,et al.  Transition Metal–MoS2 Reactions: Review and Thermodynamic Predictions , 2015, Journal of Electronic Materials.

[258]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[259]  Gyu-Tae Kim,et al.  Few-layer black phosphorus field-effect transistors with reduced current fluctuation. , 2014, ACS nano.

[260]  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature communications.

[261]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[262]  Y. Iwasa,et al.  Interface transport properties in ion-gated nano-sheets , 2013 .

[263]  X. Duan,et al.  Large Area Growth and Electrical Properties of p-Type WSe2 Atomic Layers , 2014, Nano letters.

[264]  R. Coffee,et al.  Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. , 2015, The Review of scientific instruments.

[265]  Yi Xie,et al.  Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. , 2013, Chemical Society reviews.

[266]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[267]  Simon Kurasch,et al.  Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping. , 2012, Physical review letters.

[268]  L. Lauhon,et al.  Passivation of Exfoliated Black Phosphorus Transistors Against Ambient Degradation 1 SPENCER WELLS, JOSHUA WOOD, DEEP JARI- , 2015 .

[269]  Xiaoli Huang,et al.  Pressure-Dependent Light Emission of Charged and Neutral Excitons in Monolayer MoSe2. , 2017, The journal of physical chemistry letters.

[270]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[271]  J. Kong,et al.  High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. , 2016, ACS nano.

[272]  C. Pham‐Huu,et al.  Electrical conductivity measured in atomic carbon chains , 2013 .

[273]  Madan Dubey,et al.  Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .

[274]  B. Hong,et al.  Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials , 2015 .

[275]  Gang Hee Han,et al.  Characterization of the structural defects in CVD-grown monolayered MoS2 using near-field photoluminescence imaging. , 2015, Nanoscale.

[276]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[277]  Robert M. Wallace,et al.  The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2 , 2011 .

[278]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[279]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[280]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[281]  Grégory Pandraud,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[282]  Changgu Lee,et al.  Efficient Excitonic Photoluminescence in Direct and Indirect Band Gap Monolayer MoS2. , 2015, Nano letters.

[283]  Yingying Wu,et al.  High-quality sandwiched black phosphorus heterostructure and its quantum oscillations , 2014, Nature Communications.

[284]  S. Du,et al.  Few-layer SnSe2 transistors with high on/off ratios , 2016 .

[285]  Michael F. Crommie,et al.  Origin of spatial charge inhomogeneity in graphene , 2009, 0902.4793.

[286]  R. Tenne,et al.  Kinetics of Nested Inorganic Fullerene-like Nanoparticle Formation , 1998 .

[287]  Ana Laura Elías,et al.  Facile synthesis of MoS2 and MoxW1-xS2 triangular monolayers , 2014 .

[288]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[289]  Robert M. Wallace,et al.  MoS2 functionalization for ultra-thin atomic layer deposited dielectrics , 2014 .

[290]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[291]  A. Singh,et al.  Semiconductor-metal transition in semiconducting bilayer sheets of transition metal dichalcogenides , 2012, 1203.6820.

[292]  Artem R. Oganov,et al.  Synthesis of Borophenes: Anisotropic, Two‐Dimensional Boron Polymorphs. , 2016 .

[293]  T. N. Hansen,et al.  Atomic-Scale Visualization of Inertial Dynamics , 2005, Science.

[294]  Signe S. Grønborg,et al.  Ultrafast Band Structure Control of a Two-Dimensional Heterostructure. , 2016, ACS nano.

[295]  A. Locatelli,et al.  Corrugation in exfoliated graphene: an electron microscopy and diffraction study. , 2010, ACS nano.

[296]  P. Ajayan,et al.  Synthesis of Millimeter‐Scale Transition Metal Dichalcogenides Single Crystals , 2016 .

[297]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[298]  Y. Maniwa,et al.  Local optical absorption spectra of MoS2 monolayers obtained using scanning near-field optical microscopy measurements , 2016 .

[299]  Xiaoli Huang,et al.  Correlatively Dependent Lattice and Electronic Structural Evolutions in Compressed Monolayer Tungsten Disulfide. , 2017, The journal of physical chemistry letters.

[300]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[301]  Kenneth L. Shepard,et al.  Measurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution. , 2016, Nano letters.

[302]  A. S. Jordan,et al.  The Volatilization of Molybdenum in the Presence of Water Vapor , 1965 .

[303]  B. LeRoy,et al.  Local Spectroscopic Characterization of Spin and Layer Polarization in WSe_{2}. , 2015, Physical review letters.

[304]  A. Morpurgo,et al.  Accessing the transport properties of graphene and its multilayers at high carrier density , 2010, Proceedings of the National Academy of Sciences.

[305]  Yoshihiro Iwasa,et al.  Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. , 2015, ACS nano.

[306]  Takashi Taniguchi,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS Nano.

[307]  Hongtao Yuan,et al.  High‐Density Carrier Accumulation in ZnO Field‐Effect Transistors Gated by Electric Double Layers of Ionic Liquids , 2009 .

[308]  Li-Yu Daisy Liu,et al.  Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. , 2015, Nano letters.

[309]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[310]  Xi Luo,et al.  Phosphorene FETs — Promising transistors based on a few layers of phosphorus atoms , 2015, 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP).

[311]  D. Plohmann,et al.  Orbital photogalvanic effects in quantum-confined structures , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[312]  S. Banerjee,et al.  Large area chemical vapor deposition growth of monolayer MoSe_2 and its controlled sulfurization to MoS_2 , 2016 .

[313]  Peide D. Ye,et al.  Temporal and Thermal Stability of Al2O3-Passivated Phosphorene MOSFETs , 2014, IEEE Electron Device Letters.

[314]  Yu Chen,et al.  Two-dimensional graphene analogues for biomedical applications. , 2015, Chemical Society reviews.

[315]  G. Belton,et al.  The Volatilization of Tungsten in the Presence of Water Vapor , 1964 .

[316]  E. Rossi,et al.  Proximity effect in graphene-topological-insulator heterostructures. , 2013, Physical review letters.

[317]  T. Heinz,et al.  2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers , 2014, Advanced materials.

[318]  Su-Huai Wei,et al.  Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides. , 2015, Physical review letters.

[319]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[320]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[321]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[322]  J. Lewis,et al.  Rapid and Versatile Photonic Annealing of Graphene Inks for Flexible Printed Electronics , 2015, Advanced materials.

[323]  R. Tenne,et al.  Growth of WS2 Nanotubes Phases , 2000 .

[324]  Hongtao Yuan,et al.  Large modulation of zero-dimensional electronic states in quantum dots by electric-double-layer gating , 2013, Nature Communications.

[325]  J. Robinson,et al.  Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. , 2015, ACS nano.

[326]  E. Reed,et al.  Structural Phase Stability Control of Monolayer MoTe2 with Adsorbed Atoms and Molecules , 2015 .

[327]  M. Ge,et al.  Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. , 2015, ACS nano.

[328]  M. Eginligil,et al.  Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. , 2015, ACS nano.

[329]  J. Niemantsverdriet,et al.  Basic Reaction Steps in the Sulfidation of Crystalline Tungsten Oxides , 2002 .

[330]  Yifan Sun,et al.  Controlled Exfoliation of MoS2 Crystals into Trilayer Nanosheets. , 2016, Journal of the American Chemical Society.

[331]  Tobin J. Marks,et al.  Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode , 2013, Proceedings of the National Academy of Sciences.

[332]  A. Javey,et al.  Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes , 2013 .

[333]  D. Jena,et al.  Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. , 2007, Physical review letters.

[334]  Hongtao Yuan,et al.  Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. , 2014, Nature Nanotechnology.

[335]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[336]  H. Zeng,et al.  The Study of Spin‐Valley Coupling in Atomically Thin Group VI Transition Metal Dichalcogenides , 2014, Advanced materials.

[337]  M. Katsnelson,et al.  Electron scattering on microscopic corrugations in graphene , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[338]  G. Duscher,et al.  Interlayer Coupling in Twisted WSe2/WS2 Bilayer Heterostructures Revealed by Optical Spectroscopy. , 2016, ACS nano.

[339]  Wang Yao,et al.  Valley-contrasting physics in graphene: magnetic moment and topological transport. , 2007, Physical review letters.

[340]  Pablo Perez San-José,et al.  Pressure-induced commensurate stacking of graphene on boron nitride , 2016, Nature Communications.

[341]  R. Miller,et al.  Ultrafast electron diffraction optimized for studying structural dynamics in thin films and monolayers , 2016, Structural dynamics.

[342]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[343]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[344]  R. Wallace,et al.  Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors , 2013, 1308.0767.

[345]  Steven G. Louie,et al.  Probing excitonic dark states in single-layer tungsten disulphide , 2014, Nature.

[346]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[347]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence , 2013 .

[348]  Jieun Yang,et al.  Recent Strategies for Improving the Catalytic Activity of 2D TMD Nanosheets Toward the Hydrogen Evolution Reaction , 2016, Advanced materials.

[349]  Thomas A. Blake,et al.  Dissipationless Quantum Spin Current at Room Temperature , 2003 .

[350]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[351]  A. S. Dhoot,et al.  Large electric field effect in electrolyte-gated manganites. , 2009, Physical review letters.

[352]  Shengbai Zhang,et al.  The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures , 2016, Nature Communications.

[353]  M. Terrones,et al.  Formation and Interlayer Decoupling of Colloidal MoSe2 Nanoflowers , 2015 .

[354]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[355]  Rena Akahori,et al.  Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection , 2014, Scientific Reports.

[356]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[357]  J. Warner,et al.  Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide for direct optical imaging. , 2015, ACS nano.

[358]  L. Deng,et al.  Ultrafast charge transfer in MoS2/WSe2 p–n Heterojunction , 2016 .

[359]  A. T. Johnson,et al.  In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. , 2011, Nano letters.

[360]  Bumsu Lee,et al.  Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array. , 2015, Nano letters.

[361]  T. O’Regan,et al.  Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride. , 2016, ACS nano.

[362]  Ravhi S Kumar,et al.  Structural stability of WS2 under high pressure , 2014 .

[363]  M. Terrones,et al.  Defect engineering of two-dimensional transition metal dichalcogenides , 2016 .

[364]  Kenji Watanabe,et al.  Band structure mapping of bilayer graphene via quasiparticle scattering , 2014, 1406.0898.

[365]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[366]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[367]  C. Hu,et al.  2D layered materials: From materials properties to device applications , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[368]  Jing Kong,et al.  Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates , 2008 .

[369]  J. Cheon,et al.  Chemical synthetic strategy for single-layer transition-metal chalcogenides. , 2014, Journal of the American Chemical Society.

[370]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[371]  Sefaattin Tongay,et al.  Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. , 2014, Nano letters.

[372]  Alexandra L. Rutz,et al.  Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications. , 2015, ACS nano.

[373]  C. Rao,et al.  Inorganic Graphene Analogs , 2015 .

[374]  Moon J. Kim,et al.  Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. , 2014, Nano letters.

[375]  David E. Aspnes,et al.  Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films , 2015, Scientific Reports.

[376]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[377]  D. Akinwande,et al.  Black Phosphorus Flexible Thin Film Transistors at Gighertz Frequencies. , 2016, Nano letters.

[378]  Adrien Nicolaï,et al.  DNA Translocation in Nanometer Thick Silicon Nanopores. , 2015, ACS nano.

[379]  S. Banerjee,et al.  van der Waals Heterostructures with High Accuracy Rotational Alignment. , 2016, Nano letters.

[380]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[381]  J. Venables,et al.  Nucleation and growth of thin films , 1984 .

[382]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[383]  S. Datta,et al.  Two-dimensional gallium nitride realized via graphene encapsulation. , 2016, Nature materials.

[384]  Jian Zhu,et al.  Stable aqueous dispersions of optically and electronically active phosphorene , 2016, Proceedings of the National Academy of Sciences.

[385]  Electrical transport measured in atomic carbon chains. , 2013, Nano letters.

[386]  Moon J. Kim,et al.  Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure. , 2016, Nano letters.

[387]  S. Parkin,et al.  Suppression of Metal-Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation , 2013, Science.

[388]  Yang Wang,et al.  Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene , 2015, 1510.02888.

[389]  R. Prins,et al.  Chemical Principles of the Sulfidation of Tungsten Oxides , 2002 .

[390]  Miaofang Chi,et al.  Two-dimensional GaSe/MoSe2 misfit bilayer heterojunctions by van der Waals epitaxy , 2016, Science Advances.

[391]  Hongtao Yuan,et al.  Tunable surface electron spin splitting with electric double-layer transistors based on InN. , 2013, Nano letters.

[392]  A. Balan,et al.  Cross-Talk Between Ionic and Nanoribbon Current Signals in Graphene Nanoribbon-Nanopore Sensors for Single-Molecule Detection. , 2015, Small.

[393]  Saptarshi Das Two Dimensional Electrostrictive Field Effect Transistor (2D-EFET): A sub-60mV/decade Steep Slope Device with High ON current , 2016, Scientific Reports.

[394]  Wei Shi,et al.  Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. , 2015, Chemical Society reviews.

[395]  R. Tenne,et al.  High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes , 1995, Science.

[396]  Hywel Morgan,et al.  Recent developments in 2D layered inorganic nanomaterials for sensing. , 2015, Nanoscale.

[397]  M. Terrones,et al.  Excitonic Effects in Tungsten Disulfide Monolayers on Two-Layer Graphene. , 2016, ACS nano.

[398]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[399]  Xu Cui,et al.  Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. , 2015, ACS nano.

[400]  L. Gu,et al.  Electrically Induced Ferromagnetism at Room Temperature in Cobalt-Doped Titanium Dioxide , 2011, Science.

[401]  D. Akinwande,et al.  Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide , 2014, Nature Communications.

[402]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[403]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[404]  C. W. J. Beenakker,et al.  Valley filter and valley valve in graphene , 2007 .

[405]  D. Costanzo,et al.  Gate-induced superconductivity in atomically thin MoS2 crystals. , 2015, Nature nanotechnology.

[406]  S. Ramanathan,et al.  Oxide Electronics Utilizing Ultrafast Metal-Insulator Transitions , 2011 .

[407]  Stepan S. Tsirkin,et al.  Unfolding spinor wave functions and expectation values of general operators: Introducing the unfolding-density operator , 2014, 1409.5343.

[408]  Zhongyuan Liu,et al.  Enhanced stability of black phosphorus field-effect transistors with SiO2 passivation , 2015, Nanotechnology.

[409]  Yanlong Wang,et al.  Chemically driven tunable light emission of charged and neutral excitons in monolayer WS₂. , 2014, ACS nano.

[410]  E. Reed,et al.  Dynamic Structural Response and Deformations of Monolayer MoS2 Visualized by Femtosecond Electron Diffraction. , 2015, Nano letters.

[411]  Cees Dekker,et al.  Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. , 2013, ACS nano.

[412]  Hui Zhao,et al.  Transient absorption microscopy of monolayer and bulk WSe2. , 2014, ACS nano.

[413]  Lince,et al.  Schottky-barrier formation on a covalent semiconductor without Fermi-level pinning: The metal-MoS2(0001) interface. , 1987, Physical review. B, Condensed matter.