Type III Secretion: Building and Operating a Remarkable Nanomachine.

The Type III secretion system (T3SS) is a protein export pathway that is widespread in Gram-negative bacteria and delivers effector proteins directly into eukaryotic cells. At its core lie the injectisome (a sophisticated transmembrane secretion apparatus) and a complex network of specialized chaperones that target secretory proteins to the antechamber of the injectisome. The assembly of the system, and the subsequent secretion of proteins through it, undergo fine-tuned, hierarchical regulation. Here, we present the current understanding of the injectisome assembly process, secretion hierarchy, and the role of chaperones. We discuss these events in light of available structural and biochemical dissection and propose future directions essential to revealing mechanistic insight into this fascinating nanomachine.

[1]  U. Bonas,et al.  Membrane topology of conserved components of the type III secretion system from the plant pathogen Xanthomonas campestris pv. vesicatoria. , 2010, Microbiology.

[2]  C. Parsot,et al.  The various and varying roles of specific chaperones in type III secretion systems. , 2003, Current opinion in microbiology.

[3]  L. Journet,et al.  Bacterial Injectisomes: Needle Length Does Matter , 2005, Science.

[4]  R. Macnab,et al.  The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. , 2006, Journal of molecular biology.

[5]  Yusuke V. Morimoto,et al.  Interaction of the Extreme N-Terminal Region of FliH with FlhA Is Required for Efficient Bacterial Flagellar Protein Export , 2012, Journal of bacteriology.

[6]  S. Müller,et al.  YscU recognizes translocators as export substrates of the Yersinia injectisome , 2007, The EMBO journal.

[7]  S. He,et al.  Role of the Hrp Pilus in Type III Protein Secretion in Pseudomonas syringae , 2001, Science.

[8]  G. Jensen,et al.  Architecture of the major component of the type III secretion system export apparatus , 2012, Nature Structural &Molecular Biology.

[9]  Samuel I. Miller,et al.  Structural characterization of the molecular platform for type III secretion system assembly , 2005, Nature.

[10]  Gerald J. Wyckoff,et al.  The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins. , 2012, Journal of molecular biology.

[11]  Jared R. Leadbetter,et al.  Structural diversity of bacterial flagellar motors , 2011, The EMBO journal.

[12]  A. Dessen,et al.  Membrane targeting and pore formation by the type III secretion system translocon , 2011, The FEBS journal.

[13]  T. Marlovits,et al.  Three-Dimensional Model of Salmonella’s Needle Complex at Subnanometer Resolution , 2011, Science.

[14]  J. Thomassin,et al.  A Novel C-Terminal Region within the Multicargo Type III Secretion Chaperone CesT Contributes to Effector Secretion , 2012, Journal of bacteriology.

[15]  Chun Tang,et al.  NMR model of PrgI-SipD interaction and its implications in the needle-tip assembly of the Salmonella type III secretion system. , 2014, Journal of molecular biology.

[16]  C. E. Stebbins,et al.  A common assembly module in injectisome and flagellar type III secretion sorting platforms , 2015, Nature Communications.

[17]  I. Rosenshine,et al.  CesAB is an enteropathogenic Escherichia coli chaperone for the type-III translocator proteins EspA and EspB. , 2003, Microbiology.

[18]  M. Shipston,et al.  Hierarchal type III secretion of translocators and effectors from Escherichia coli O157:H7 requires the carboxy terminus of SepL that binds to Tir , 2008, Molecular microbiology.

[19]  K. Namba,et al.  Common architecture of the flagellar type III protein export apparatus and F- and V-type ATPases , 2011, Nature Structural &Molecular Biology.

[20]  D. Baker,et al.  The modular structure of the inner-membrane ring component PrgK facilitates assembly of the type III secretion system basal body. , 2015, Structure.

[21]  Colin Hughes,et al.  Building a flagellum outside the bacterial cell , 2014, Trends in microbiology.

[22]  D. Heinz Secrets of a secretin. , 2013, Structure.

[23]  B. Finlay,et al.  SepD/SepL-Dependent Secretion Signals of the Type III Secretion System Translocator Proteins in Enteropathogenic Escherichia coli , 2015, Journal of bacteriology.

[24]  D. Múnera,et al.  N-Terminal Type III Secretion Signal of Enteropathogenic Escherichia coli Translocator Proteins , 2010, Journal of bacteriology.

[25]  K. Namba,et al.  Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex , 2014, Molecular microbiology.

[26]  S. Joshi,et al.  Oligomeric states of the Shigella translocator protein IpaB provide structural insights into formation of the type III secretion translocon , 2013, Protein science : a publication of the Protein Society.

[27]  Yusuke V. Morimoto,et al.  Common and distinct structural features of Salmonella injectisome and flagellar basal body , 2013, Scientific Reports.

[28]  Yusuke V. Morimoto,et al.  An energy transduction mechanism used in bacterial flagellar type III protein export , 2011, Nature communications.

[29]  A. Blocker,et al.  Needle length control and the secretion substrate specificity switch are only loosely coupled in the type III secretion apparatus of Shigella , 2012, Microbiology.

[30]  Julia Monjarás Feria,et al.  EscO, a Functional and Structural Analog of the Flagellar FliJ Protein, Is a Positive Regulator of EscN ATPase Activity of the Enteropathogenic Escherichia coli Injectisome , 2014, Journal of bacteriology.

[31]  Georgia Orfanoudaki,et al.  Proteome-wide Subcellular Topologies of E. coli Polypeptides Database (STEPdb)* , 2014, Molecular & Cellular Proteomics.

[32]  S. Karamanou,et al.  Breaking on through to the Other Side: Protein Export through the Bacterial Sec System , 2022 .

[33]  Evan D. Brutinel,et al.  Control of gene expression by type III secretory activity. , 2008, Current opinion in microbiology.

[34]  E. Morris,et al.  3D structure of EspA filaments from enteropathogenic Escherichia coli , 2003, Molecular microbiology.

[35]  S. Lloyd,et al.  YscP and YscU Switch the Substrate Specificity of the Yersinia Type III Secretion System by Regulating Export of the Inner Rod Protein YscI , 2008, Journal of bacteriology.

[36]  G. Dreyfus,et al.  The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion. , 2011, Microbiology.

[37]  G. Plano,et al.  Identification of TyeA residues required to interact with YopN and to regulate Yop secretion. , 2007, Advances in experimental medicine and biology.

[38]  T. L. Archuleta,et al.  A Gatekeeper Chaperone Complex Directs Translocator Secretion during Type Three Secretion , 2014, PLoS pathogens.

[39]  G. Frankel,et al.  Structural and functional studies of the enteropathogenic Escherichia coli type III needle complex protein EscJ , 2005, Molecular microbiology.

[40]  J. Galán,et al.  Genetic Analysis of Assembly of theSalmonella enterica Serovar Typhimurium Type III Secretion-Associated Needle Complex , 2001, Journal of bacteriology.

[41]  Tijana Z Grove,et al.  Ligand binding by repeat proteins: natural and designed. , 2008, Current opinion in structural biology.

[42]  K. Namba,et al.  Interactions of bacterial flagellar chaperone–substrate complexes with FlhA contribute to co‐ordinating assembly of the flagellar filament , 2013, Molecular microbiology.

[43]  Yusuke V. Morimoto,et al.  The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis , 2014, Scientific Reports.

[44]  C. Kalodimos,et al.  Substrate-activated conformational switch on chaperones encodes a targeting signal in type III secretion. , 2013, Cell reports.

[45]  E. Boekema,et al.  The 33 carboxyl-terminal residues of Spa40 orchestrate the multi-step assembly process of the type III secretion needle complex in Shigella flexneri. , 2010, Microbiology.

[46]  M. Donnenberg,et al.  Interactions and Predicted Host Membrane Topology of the Enteropathogenic Escherichia coli Translocator Protein EspB , 2011, Journal of bacteriology.

[47]  Rachel Chen,et al.  Biotechnological applications of bacterial protein secretion: from therapeutics to biofuel production. , 2013, Research in microbiology.

[48]  G. Plano,et al.  The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses , 2013, Immunologic Research.

[49]  E. Terentjev,et al.  A chain mechanism for flagellum growth , 2013, Nature.

[50]  Yusuke V. Morimoto,et al.  Roles of the extreme N‐terminal region of FliH for efficient localization of the FliH–FliI complex to the bacterial flagellar type III export apparatus , 2009, Molecular microbiology.

[51]  K. Namba,et al.  Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export , 2008, Nature.

[52]  K. Namba,et al.  ATP-induced FliI hexamerization facilitates bacterial flagellar protein export. , 2009, Biochemical and biophysical research communications.

[53]  L. Foster,et al.  Quantitative Proteomic Analysis Reveals Formation of an EscL-EscQ-EscN Type III Complex in Enteropathogenic Escherichia coli , 2011, Journal of bacteriology.

[54]  T. Marlovits,et al.  Structural Insights into the Assembly of the Type III Secretion Needle Complex , 2004, Science.

[55]  M. Futai,et al.  A unique mechanism of curcumin inhibition on F1 ATPase. , 2014, Biochemical and biophysical research communications.

[56]  E. Brouwers,et al.  Dual temporal transcription activation mechanisms control cesT expression in enteropathogenic Escherichia coli. , 2012, Microbiology.

[57]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[58]  G. Cornelis,et al.  Deciphering the assembly of the Yersinia type III secretion injectisome , 2010, The EMBO journal.

[59]  M. Karplus,et al.  Trapping the ATP binding state leads to a detailed understanding of the F1-ATPase mechanism , 2014, Proceedings of the National Academy of Sciences.

[60]  J. Kaper,et al.  SepL, a protein required for enteropathogenic Escherichia coli type III translocation, interacts with secretion component SepD , 2004, Molecular microbiology.

[61]  Samuel Wagner,et al.  A Sorting Platform Determines the Order of Protein Secretion in Bacterial Type III Systems , 2011, Science.

[62]  H. Stahlberg,et al.  Type III Protein Translocase , 2003, Journal of Biological Chemistry.

[63]  Tomoko Kubori,et al.  Assembly of the inner rod determines needle length in the type III secretion injectisome , 2006, Nature.

[64]  Keiichi Namba,et al.  Bacterial nanomachines: the flagellum and type III injectisome. , 2010, Cold Spring Harbor perspectives in biology.

[65]  A. Dessen,et al.  Biogenesis, regulation, and targeting of the type III secretion system. , 2011, Structure.

[66]  Jun Liu,et al.  Visualization of the type III secretion sorting platform of Shigella flexneri , 2015, Proceedings of the National Academy of Sciences.

[67]  J. Kowal,et al.  In situ structural analysis of the Yersinia enterocolitica injectisome , 2013, eLife.

[68]  J. Thomassin,et al.  Role of EscU auto-cleavage in promoting type III effector translocation into host cells by enteropathogenic Escherichia coli , 2011, BMC Microbiology.

[69]  K. Hughes,et al.  The role of the FliK molecular ruler in hook‐length control in Salmonella enterica , 2010, Molecular microbiology.

[70]  B. China,et al.  The locus for enterocyte effacement (LEE) of enteropathogenic Escherichia coli (EPEC) from dogs and cats. , 1999, Advances in experimental medicine and biology.

[71]  M. Azarkan,et al.  Interplay between predicted inner‐rod and gatekeeper in controlling substrate specificity of the type III secretion system , 2013, Molecular microbiology.

[72]  N. Strynadka,et al.  PROTEINSTRUCTUREREPORT Crystal structure of the C-terminal domain of the Salmonella type III secretion system export apparatus protein InvA , 2010 .

[73]  A. Rietsch,et al.  Control of type III secretion activity and substrate specificity by the cytoplasmic regulator PcrG , 2014, Proceedings of the National Academy of Sciences.

[74]  Tracy Palmer,et al.  Secretion by numbers: protein traffic in prokaryotes , 2006, Molecular microbiology.

[75]  J. Armitage,et al.  Composition, Formation, and Regulation of the Cytosolic C-ring, a Dynamic Component of the Type III Secretion Injectisome , 2015, PLoS biology.

[76]  S. Karamanou,et al.  Bacterial protein secretion through the translocase nanomachine , 2007, Nature Reviews Microbiology.

[77]  D. Büttner Protein Export According to Schedule: Architecture, Assembly, and Regulation of Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria , 2012, Microbiology and Molecular Reviews.

[78]  Samuel Wagner,et al.  Organization and coordinated assembly of the type III secretion export apparatus , 2010, Proceedings of the National Academy of Sciences.

[79]  I. Fearnley,et al.  Conservation of Complete Trimethylation of Lysine-43 in the Rotor Ring of c-Subunits of Metazoan Adenosine Triphosphate (ATP) Synthases , 2015, Molecular & Cellular Proteomics.

[80]  G. Cornelis,et al.  Individual chaperones required for Yop secretion by Yersinia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[81]  K. Namba,et al.  Role of EscP (Orf16) in Injectisome Biogenesis and Regulation of Type III Protein Secretion in Enteropathogenic Escherichia coli , 2012, Journal of bacteriology.

[82]  G. Plano,et al.  Structure of the Yersinia pestis tip protein LcrV refined to 1.65 Å resolution. , 2013, Acta crystallographica. Section F, Structural biology and crystallization communications.

[83]  K. Namba,et al.  Interaction between FliJ and FlhA, Components of the Bacterial Flagellar Type III Export Apparatus , 2012, Journal of bacteriology.

[84]  C. Kalodimos,et al.  Structural instability tuning as a regulatory mechanism in protein-protein interactions. , 2011, Molecular cell.

[85]  M. Pallen,et al.  SepL Resembles an Aberrant Effector in Binding to a Class 1 Type III Secretion Chaperone and Carrying an N-Terminal Secretion Signal , 2010, Journal of bacteriology.

[86]  A. Blocker,et al.  The Shigella T3SS needle transmits a signal for MxiC release, which controls secretion of effectors , 2010, Molecular microbiology.

[87]  R. Macnab,et al.  Domain organization and function of Salmonella FliK, a flagellar hook-length control protein. , 2004, Journal of molecular biology.

[88]  B. Finlay,et al.  EscI: a crucial component of the type III secretion system forms the inner rod structure in enteropathogenic Escherichia coli. , 2012, The Biochemical journal.

[89]  A. Abe,et al.  Assembly of the Type III Secretion Apparatus of Enteropathogenic Escherichia coli , 2006, Journal of bacteriology.

[90]  B. Finlay,et al.  Secretin of the Enteropathogenic Escherichia coli Type III Secretion System Requires Components of the Type III Apparatus for Assembly and Localization , 2003, Infection and Immunity.

[91]  J. Kowal,et al.  Structure of the dodecameric Yersinia enterocolitica secretin YscC and its trypsin-resistant core. , 2013, Structure.

[92]  Nico Kümmerer,et al.  FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system , 2010, Proceedings of the National Academy of Sciences.

[93]  A. Rietsch,et al.  Fueling type III secretion. , 2015, Trends in microbiology.

[94]  M. Junop,et al.  Identification of the Docking Site between a Type III Secretion System ATPase and a Chaperone for Effector Cargo* , 2014, Journal of Biological Chemistry.

[95]  Keiichi Namba,et al.  Structure of a type III secretion needle at 7-Å resolution provides insights into its assembly and signaling mechanisms , 2012, Proceedings of the National Academy of Sciences.

[96]  B. Finlay,et al.  Translocated Intimin Receptor and Its Chaperone Interact with ATPase of the Type III Secretion Apparatus of Enteropathogenic Escherichia coli , 2003, Journal of bacteriology.

[97]  Samuel Wagner,et al.  Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. , 2014, Annual review of microbiology.

[98]  Steven Johnson,et al.  Building a secreting nanomachine: a structural overview of the T3SS , 2014, Current opinion in structural biology.

[99]  S. Aizawa,et al.  Length of the Flagellar Hook and the Capacity of the Type III Export Apparatus , 2001, Science.

[100]  D. Frank,et al.  Multi-Functional Characteristics of the Pseudomonas aeruginosa Type III Needle-Tip Protein, PcrV; Comparison to Orthologs in other Gram-negative Bacteria , 2011, Front. Microbio..

[101]  B. Finlay,et al.  Structural Analysis of a Specialized Type III Secretion System Peptidoglycan-cleaving Enzyme* , 2015, The Journal of Biological Chemistry.

[102]  T. Marlovits,et al.  Structure of a pathogenic type 3 secretion system in action , 2013, Nature Structural &Molecular Biology.

[103]  G. Schoehn,et al.  PscI is a type III secretion needle anchoring protein with in vitro polymerization capacities , 2015, Molecular microbiology.

[104]  L. Journet,et al.  The Needle Length of Bacterial Injectisomes Is Determined by a Molecular Ruler , 2003, Science.

[105]  J. Galán,et al.  The inner rod protein controls substrate switching and needle length in a Salmonella type III secretion system , 2013, Proceedings of the National Academy of Sciences.

[106]  B. Finlay,et al.  Structural characterization of a type III secretion system filament protein in complex with its chaperone , 2005, Nature Structural &Molecular Biology.

[107]  C. E. Stebbins,et al.  A common structural motif in the binding of virulence factors to bacterial secretion chaperones. , 2006, Molecular cell.

[108]  Samuel I. Miller,et al.  Structural analysis of the essential self-cleaving type III secretion proteins EscU and SpaS , 2008, Nature.

[109]  G. Cornelis,et al.  The multitalented type III chaperones: all you can do with 15 kDa. , 2003, FEMS microbiology letters.

[110]  J. Ellis,et al.  A bacterial type III secretion-based delivery system for functional assays of fungal effectors in cereals. , 2014, Methods in molecular biology.

[111]  E. Mitchell,et al.  Crystal structure of Spa40, the specificity switch for the Shigella flexneri type III secretion system , 2008, Molecular microbiology.

[112]  M. Kokkinidis,et al.  Conserved features of type III secretion , 2004, Cellular microbiology.

[113]  D. DeRosier,et al.  The Three-Dimensional Structure of the Flagellar Rotor from a Clockwise-Locked Mutant of Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[114]  Jack H Freed,et al.  Assembly states of FliM and FliG within the flagellar switch complex. , 2015, Journal of molecular biology.

[115]  T. Tosi,et al.  Structural basis of eukaryotic cell targeting by type III secretion system (T3SS) effectors. , 2013, Research in microbiology.

[116]  Mei Liu,et al.  pH Sensing by Intracellular Salmonella Induces Effector Translocation , 2010, Science.

[117]  J. Derrick A pilot sheds light on secretin assembly. , 2008, Structure.

[118]  M. Ghassemian,et al.  Structure and Interactions of the Cytoplasmic Domain of the Yersinia Type III Secretion Protein YscD , 2012, Journal of bacteriology.

[119]  S. Wagner,et al.  Assembly of the bacterial type III secretion machinery. , 2014, FEMS microbiology reviews.

[120]  J. Galán,et al.  Chaperone release and unfolding of substrates in type III secretion , 2005, Nature.