Mobilizing Crop Biodiversity.
暂无分享,去创建一个
Paul D. Shaw | Peter W. B. Phillips | L. Rieseberg | M. Tester | P. Kersey | G. Bryan | H. Nguyen | M. Baum | R. Varshney | R. Henry | C. Richards | S. Kresovich | S. Mccouch | D. Grattapaglia | K. Eversole | R. Waugh | U. Scholz | R. Papa | A. Rasheed | L. Cattivelli | Z. Kehel | M. Rouard | J. Svensson | N. Stein | B. Sherman | D. Charest | P. Wenzl | S. Mayes | S. E. Staton | R. Barbieri | N. Anglin | K. Ghamkhar | M. Ndjiondjop | S. Paiva | M. Abberton | Tofazzal Islam | Katy Navabi | K. Bett | H. Booker | G. L. Brown | M. Freitas | Maria Cleria Valadares Inglis | E. Marden | Maria Jose Amstalden Sampaio | José Francisco Montenegro Valls | S. Visscher | E. V. von Wettberg | S. McCouch | P. Phillips
[1] Uwe Scholz,et al. BRIDGE – A Visual Analytics Web Tool for Barley Genebank Genomics , 2020, Frontiers in Plant Science.
[2] G. Norton,et al. Andean potato diversity conserved in the International Potato Center genebank helps develop agriculture in Uganda: the example of the variety ‘Victoria’ , 2020, Food Security.
[3] R. Henry,et al. The Nagoya Protocol and historical collections of plants , 2020, Nature Plants.
[4] Star Yanxin Gao,et al. Strategies for Effective Use of Genomic Information in Crop Breeding Programs Serving Africa and South Asia , 2020, Frontiers in Plant Science.
[5] R. Wynberg,et al. Rethink the expansion of access and benefit sharing , 2020, Science.
[6] Peter W. B. Phillips,et al. Risk and safety considerations of genome edited crops: Expert opinion , 2019, Current Research in Biotechnology.
[7] Jose A. Jiménez-Berni,et al. Review: New sensors and data-driven approaches—A path to next generation phenomics☆ , 2019, Plant science : an international journal of experimental plant biology.
[8] R R Mir,et al. High-throughput phenotyping for crop improvement in the genomics era. , 2019, Plant science : an international journal of experimental plant biology.
[9] Elizabeth Arnaud,et al. Applying FAIR Principles to Plant Phenotypic Data Management in GnpIS , 2019, Plant phenomics.
[10] D. Voytas,et al. De novo domestication of wild tomato using genome editing , 2018, Nature Biotechnology.
[11] D. de Koning,et al. Removal of alleles by genome editing (RAGE) against deleterious load , 2019, Genetics Selection Evolution.
[12] R. Mercier,et al. Unleashing meiotic crossovers in hybrid plants , 2017, Proceedings of the National Academy of Sciences.
[13] E. Marden. International agreements may impact genomic technologies , 2017, Nature Plants.
[14] L. Rieseberg,et al. Agriculture: Feeding the future , 2013, Nature.
[15] Prabhu L Pingali,et al. Green Revolution: Impacts, limits, and the path ahead , 2012, Proceedings of the National Academy of Sciences.
[16] Romeo V. Labios,et al. Development and Rapid Adoption of Submergence-Tolerant (Sub1) Rice Varieties , 2012 .
[17] Natalie de Souza. High-throughput phenotyping , 2009, Nature Methods.
[18] Z. Lippman,et al. An integrated view of quantitative trait variation using tomato interspecific introgression lines. , 2007, Current opinion in genetics & development.
[19] R. Chetelat,et al. Homeologous Recombination in Solanum lycopersicoides Introgression Lines of Cultivated Tomato , 2006, Genetics.
[20] R. Poole,et al. Risk and Safety , 2006 .
[21] S. Tanksley,et al. Seed banks and molecular maps: unlocking genetic potential from the wild. , 1997, Science.
[22] W. Bender,et al. Feeding the future. , 1997, Population today.
[23] N. Vavilov. Origin and geography of cultivated plants , 1993 .
[24] J. Harlan. Genetics of Disaster 1 , 1972 .