Bayesian nonparametric relational learning with the broken tree process

Recently, an increase in the availability and importance of relational datasets-such as social network data or protein interaction data-has lead to increased interest in modelling and learning from such data. Such data are often modelled as exchangeable arrays, yielding a particular representation due to Aldous and Hoover. We present a Bayesian nonparametric model based on this representation, which uses a novel process to generate a partition of the data. We present a Reversible Jump MCMC algorithm for inference in this model, and demonstrate the effectiveness of this approach on real-world data.

[1]  D. Blei Bayesian Nonparametrics I , 2016 .

[2]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[3]  Thomas L. Griffiths,et al.  Learning Systems of Concepts with an Infinite Relational Model , 2006, AAAI.

[4]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[5]  Daniel M. Roy,et al.  Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Germain Kreweras Complexité et circuits eulériens dans les sommes tensorielles de graphes , 1978, J. Comb. Theory, Ser. B.

[7]  Joshua B. Tenenbaum,et al.  Learning annotated hierarchies from relational data , 2006, NIPS.

[8]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[9]  Yee Whye Teh,et al.  Mondrian Forests for Large-Scale Regression when Uncertainty Matters , 2015, AISTATS.

[10]  Michael I. Jordan,et al.  Bayesian Nonparametric Latent Feature Models , 2011 .

[11]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[12]  Yee Whye Teh,et al.  The Mondrian Process , 2008, NIPS.

[13]  Hans-Peter Kriegel,et al.  Infinite Hidden Relational Models , 2006, UAI.

[14]  Hiroki Arimura,et al.  An Extension of the Infinite Relational Model Incorporating Interaction between Objects , 2013, PAKDD.

[15]  Yuchung J. Wang,et al.  Stochastic Blockmodels for Directed Graphs , 1987 .

[16]  Yee Whye Teh,et al.  Bayesian Hierarchical Community Discovery , 2013, NIPS.

[17]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[18]  P. Green,et al.  Reversible jump MCMC , 2009 .

[19]  T. Griffiths,et al.  Bayesian nonparametric latent feature models , 2007 .

[20]  Naonori Ueda,et al.  Subset Infinite Relational Models , 2012, AISTATS.

[21]  Zoubin Ghahramani,et al.  Random function priors for exchangeable arrays with applications to graphs and relational data , 2012, NIPS.

[22]  Lars Kai Hansen,et al.  Infinite multiple membership relational modeling for complex networks , 2011, 2011 IEEE International Workshop on Machine Learning for Signal Processing.

[23]  Zoubin Ghahramani,et al.  An Infinite Latent Attribute Model for Network Data , 2012, ICML.

[24]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[25]  Yee Whye Teh,et al.  Mondrian Forests: Efficient Online Random Forests , 2014, NIPS.

[26]  Thomas L. Griffiths,et al.  Nonparametric Latent Feature Models for Link Prediction , 2009, NIPS.