Riesz-projection-based theory of light-matter interaction in dispersive nanoresonators

A theory based on Riesz projections is introduced to analyze the coupling of light sources to resonant states of nanostructures. The concept applies to general dispersive media without the explicit use of a mode orthogonality relation and allows for the precise quantification of the interaction with the nonresonant background. Exemplarily, a numerical implementation of the theory is used for the computation of modal Purcell factors of an emitter embedded into a dielectric nanoresonator supporting several weakly localized modes.

[1]  Philippe Lalanne,et al.  Light Interaction with Photonic and Plasmonic Resonances , 2017, Laser & Photonics Reviews.

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  J. Khurgin,et al.  Is metal a friend or foe? , 2018 .

[4]  Eric Polizzi,et al.  FEAST Eigensolver for Nonlinear Eigenvalue Problems , 2018, J. Comput. Sci..

[5]  V. Shalaev,et al.  Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection , 2018, 1804.04433.

[6]  Philippe Lalanne,et al.  Rigorous modal analysis of plasmonic nanoresonators , 2017, 1711.05011.

[7]  N. Mortensen,et al.  Nonlocal quasinormal modes for arbitrarily shaped three-dimensional plasmonic resonators , 2017, 1707.05750.

[8]  A. Femius Koenderink,et al.  Single-Photon Nanoantennas , 2017, ACS photonics.

[9]  Silke Christiansen,et al.  Mode Matching for Optical Antennas. , 2016, Physical review letters.

[10]  R. Gordon,et al.  Modal theory of modified spontaneous emission of a quantum emitter in a hybrid plasmonic photonic-crystal cavity system , 2016, 1606.05874.

[11]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[12]  E. Muljarov,et al.  Comment on "Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators" , 2016, 1602.07278.

[13]  A. Alú,et al.  Controlling sound with acoustic metamaterials , 2016 .

[14]  Jian-Wei Pan,et al.  On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. , 2016, Physical review letters.

[15]  E. Muljarov,et al.  Resonant-state expansion of dispersive open optical systems: Creating gold from sand , 2015, 1510.01182.

[16]  E. Muljarov,et al.  Exact mode volume and Purcell factor of open optical systems , 2014, 1409.6877.

[17]  P. Lalanne,et al.  Photonic and plasmonic nanoresonators: a modal approach , 2015, SPIE NanoScience + Engineering.

[18]  R. Ge,et al.  Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators , 2015, 1501.05938.

[19]  M. Ruzzene,et al.  Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook , 2014 .

[20]  P. Kristensen,et al.  Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators , 2013, 1312.5769.

[21]  Benjamin Vial,et al.  Quasimodal expansion of electromagnetic fields in open two-dimensional structures , 2013, 1311.3244.

[22]  S. Burger,et al.  Enhanced photon-extraction efficiency from deterministic quantum-dot microlenses , 2013, 1312.6298.

[23]  P Lalanne,et al.  Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.

[24]  S. Burger,et al.  Numerical analysis of nanostructures for enhanced light extraction from OLEDs , 2013, Photonics West - Optoelectronic Materials and Devices.

[25]  T. Ebbesen,et al.  Modifying chemical landscapes by coupling to vacuum fields. , 2012, Angewandte Chemie.

[26]  Wolf-Jurgen Beyn,et al.  An integral method for solving nonlinear eigenvalue problems , 2010, 1003.1580.

[27]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[28]  E. Muljarov,et al.  Brillouin-Wigner perturbation theory in open electromagnetic systems , 2010, 1205.4924.

[29]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[30]  E. Brändas,et al.  Unstable states in the continuous spectra , 2010 .

[31]  Hiroto Tadano,et al.  A numerical method for nonlinear eigenvalue problems using contour integrals , 2009, JSIAM Lett..

[32]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[33]  K. Vahala Optical microcavities , 2003, Nature.

[34]  Alexander P. Nizovtsev,et al.  Spectroscopy of Single N-V Centers in Diamond , 2001 .

[35]  M. Zworski RESONANCES IN PHYSICS AND GEOMETRY , 1999 .

[36]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[37]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[38]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[39]  Young,et al.  Completeness and orthogonality of quasinormal modes in leaky optical cavities. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[40]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[41]  Fritz Peter,et al.  Über Brechungsindizes und Absorptionskonstanten des Diamanten zwischen 644 und 226 mμ , 1923 .