Hopf algebras - Variant notions and reconstruction theorems

Hopf algebras are closely related to monoidal categories. More precise, $k$-Hopf algebras can be characterized as those algebras whose category of finite dimensional representations is an autonomous monoidal category such that the forgetful functor to $k$-vectorspaces is a strict monoidal functor. This result is known as the Tannaka reconstruction theorem (for Hopf algebras). Because of the importance of both Hopf algebras in various fields, over the last last few decades, many generalizations have been defined. We will survey these different generalizations from the point of view of the Tannaka reconstruction theorem.

[1]  S. Caenepeel,et al.  Weak Bialgebras and Monoidal Categories , 2011, 1103.2261.

[2]  R. Street,et al.  TANNAKA DUALITY AND CONVOLUTION FOR DUOIDAL CATEGORIES , 2011, 1111.5659.

[3]  Robert Wisbauer,et al.  Bimonads and Hopf monads on categories , 2007, 0710.1163.

[4]  Ross Street,et al.  AN INTRODUCTION TO TANNAKA DUALITY AND QUANTUM GROUPS , 1991 .

[5]  G. Bòhm Hopf Algebroids , 2008, 0805.3806.

[6]  V. Drinfeld,et al.  Quasi Hopf algebras , 1989 .

[7]  S. Lack,et al.  Weak bimonads and weak Hopf monads , 2010, 1002.4493.

[8]  Topological Hopf Algebras, Quantum Groups and Deformation Quantization , 2003, Hopf Algebras in Noncommutative Geometry and Physics.

[9]  R. G. Larson,et al.  Topological Hopf Algebras and Braided Monoidal Categories , 1998, Appl. Categorical Struct..

[10]  S. Caenepeel,et al.  The braided monoidal structures on the category of vector spaces graded by the Klein group , 2009, Proceedings of the Edinburgh Mathematical Society.

[11]  N. Reshetikhin,et al.  Quantum Groups , 1993, hep-th/9311069.

[12]  P. Schauenburg Tannaka duality for arbitrary hopf algebras , 1992 .

[13]  Mitsuhiro Takeuchi,et al.  Survey of braided Hopf Algebras , 1999 .

[14]  Stephen Lack,et al.  Hopf monoidal comonads , 2010 .

[15]  Tannaka duality for Maschkean categories , 2002 .

[16]  D. Schappi,et al.  The formal theory of Tannaka duality , 2011, Astérisque.

[17]  K. Szlachányi Fiber functors, monoidal sites and Tannaka duality for bialgebroids , 2009, 0907.1578.

[18]  Micah Blake McCurdy,et al.  Graphical Methods for Tannaka Duality of Weak Bialgebras and Weak Hopf Algebras in Arbitrary Braided Monoidal Categories , 2011, 1110.5542.

[19]  A. V. Daele Multiplier Hopf algebras , 1994 .

[20]  Gabriella Böhm,et al.  Weak (Hopf) Bialgebras , 1999 .

[21]  Brian Day Enriched Tannaka reconstruction , 1996 .

[22]  Hopf group-coalgebras , 2000, math/0012073.

[23]  Alexis Virelizier,et al.  Hopf monads on monoidal categories , 2010, 1003.1920.

[24]  S. Caenepeel,et al.  A monoidal structure on the category of relative Hopf modules , 2010, 1011.4802.

[25]  K. Szlachanyi The monoidal Eilenberg–Moore construction and bialgebroids , 2002 .

[26]  Quasialgebra Structure of the Octonions , 1998, math/9802116.

[27]  Gizem Karaali On Hopf Algebras and Their Generalizations , 2007, math/0703441.

[28]  S. Silvestrov,et al.  Hom-Lie Admissible Hom-coalgebras and Hom-Hopf Algebras , 2007, 0709.2413.

[29]  S. Caenepeel,et al.  Monoidal Hom–Hopf Algebras , 2009, 0907.0187.

[30]  Yetter-Drinfel'd Hopf Algebras over Groups of Prime Order , 1999, math/9905191.

[31]  S. Majid Foundations of Quantum Group Theory , 1995 .

[32]  Vladimir Turaev Homotopy field theory in dimension 3 and crossed group-categories , 2000 .

[33]  D. Schappi Tannaka duality for comonoids in cosmoi , 2009, 0911.0977.

[34]  Peter Schauenburg,et al.  Bialgebras Over Noncommutative Rings and a Structure Theorem for Hopf Bimodules , 1998, Appl. Categorical Struct..

[35]  S. Caenepeel,et al.  A Categorical Approach to Turaev's Hopf Group-Coalgebras , 2004, math/0409600.

[36]  G. Bòhm,et al.  The weak theory of monads , 2009, 0902.4192.

[37]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[38]  Ieke Moerdijk,et al.  Monads on tensor categories , 2002 .

[39]  G. Bohm,et al.  Weak Hopf Algebras: I. Integral Theory and C-Structure , 1998, math/9805116.

[40]  J. Vercruysse,et al.  Multiplier bi- and Hopf algebras , 2010 .